DOI QR코드

DOI QR Code

폐열 에너지 수집을 위한 박막형 열-전기화학전지 개발

Development of Thin-Film Thermo-Electrochemical Cell for Harvesting Waste Thermal Energy

  • 임형욱 (서울대학교 기계항공공학부) ;
  • 강태준 (부산대학교 나노메카트로닉스공학과) ;
  • 김대원 (부산대학교 기계공학부) ;
  • 김용협 (서울대학교 기계항공공학부, 항공우주신기술연구소)
  • 투고 : 2012.09.01
  • 심사 : 2012.09.20
  • 발행 : 2012.11.01

초록

본 연구에서 폐열 에너지를 수집하여 직접 전기로 변환하는 박막형 열전지를 제작하였다. 전도성 탄소섬유에 탄소나노튜브를 코팅함으로써 전기 전도도는 증가하였고, 다양한 곡률 반경에 대한 굽힘 실험에서 전극의 저항변화는 없었다. 열전지의 최대출력은 온도차의 제곱에 비례하여 증가하였으며, $3.4^{\circ}C$의 온도차에서 2.5 mW/kg의 전력을 생산하였다. 12시간의 방전 실험 결과, 열전지는 지속적으로 구동이 가능함을 확인하였다. 또한, 유연한 열전지를 뜨거운 유체가 흐르는 파이프에 감아 구동한 결과, 파이프의 곡률반경에 따라 내부저항은 감소하였고, 생산된 전력은 최대 30 % 상승하였다. 따라서 제작된 열전지는 다양한 곡면형 열원에 적용이 가능하다.

In this study, a thin-film thermo-electrochemical cell that directly converts waste thermal energy into electrical energy was fabricated. Electrical conductivity of conducting carbon fiber, which was used as flexible electrode, was increased through coating of carbon nanotube, and resistance of the CNT-coated fiber electrode was not changed even after bending test with various curvatures. Maximum output power of the thermocell was increased quadratically with the temperature difference, and showed a value of about 2.5 mW/kg at temperature difference of $3.4^{\circ}C$. As a result of discharge test for 12 hours, it is confirmed that the cell can operates continuously. And thin-film thermocell wrapped around a pipe with hot liquid flowing within was demonstrated. Internal resistance of the cell was decreased with various curvature of heat pipe, and maximum output power was increased by 30 %. Therefore, the cell can be applied to various heat source.

키워드

참고문헌

  1. Joo Seok Park, "Alkari Metal Thermal to Electric Converter for Space Power Generation", 자동차공학회지 Vol. 25, Jun. 2003, pp.60-65.
  2. Tae June Kang, Shaoli Fang, Mikhail E. Kozlov, Carter S. Haines, Na Li, Yong Hyup Kim, Yongsheng Chen and Ray H. Baughman, "Electrical power from nanotube and graphene electrochemical thermal energy harvesters" Adv. Func. Mater., Vol. 22, Dec. 2011, pp.477-489.
  3. Cronin B. Vining, "An inconvenient truth about thermoelectrics" Nat. Mater., Vol. 8, Feb. 2009, pp.83-85. https://doi.org/10.1038/nmat2361
  4. J. N. Agar and W. G. Breck, "Thermal diffusion in non-isothermal cells." Trans. Faraday. Soc., Vol. 53, Sep. 1957, pp.167-178. https://doi.org/10.1039/tf9575300167
  5. J. N. Agar and W. G. Breck, "Thermal diffusion in non-isothermal cells." Trans. Faraday. Soc., Vol. 53, Sep. 1957, pp.167-178. https://doi.org/10.1039/tf9575300167
  6. E. D. Eastman, "THERMODYNAMICS OF NON-ISOTHERMAL SYSTEMS" J. Am. Chem. Soc., Vol. 48, Jun. 1927, pp.1482-1493.
  7. Rama Venkatasubramanian, Edward Siivola, Thomas Colpitts and Brooks O'Quinn, "Thin-film thermoelectric devices with high room-temperature figures of merit" Nat., Vol. 413, Oct. 2001, pp.597-602. https://doi.org/10.1038/35098012
  8. Toshiro Hirai, Kazuhiko Shindo and Tsutomu Ogata, "Charge and Discharge Characteristics of Thermochargeable Galvanic Cells with an $[Fe(CN)6]^{4-}$/$[Fe(CN)6]^{3-}$ Redox Couple" J. Electrochem. Soc., Vol. 143, Apr. 1996, pp.1305-1313. https://doi.org/10.1149/1.1836635
  9. Lihong Baoand Xiaodong Li, "Towards Textile Energy Storage from Cotton T-Shirts" Adv. Mater., Vol. 24, Jun. 2012, pp.3246-3252. https://doi.org/10.1002/adma.201200246

피인용 문헌

  1. Thermo-electrochemical generator: energy harvesting & thermoregulation for liquid cooling applications vol.1, pp.6, 2017, https://doi.org/10.1039/C7SE00161D