• Title/Summary/Keyword: Internal filling

Search Result 197, Processing Time 0.029 seconds

A Fundamental Research on the Microscopic Texture of Hardner Mixed with the Structure Compound Waterproof Agent (구체방수제를 혼입한 시멘트 경화체의 미세조직에 관한 기초적 연구)

  • Kim KwangKi;Park HeGon;Kim WooJae;Kim Sang Kyu;Song ByungChang;Jung SangJin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.497-500
    • /
    • 2004
  • Recently, the use of structure compound waterproof agent (hereinafter referred to as 'SCWA') that is used when manufacturing concrete for concrete structures, increases in quantity. However, while it is expected that the SCWA that is mixed in the concrete inside can significantly affect the change of physical properties that lift the internal force of a structure. This study has been conducted through an experiment for the effects of cement hardener on the formation of microscopic texture, and newly generated hydrates from that result were not confirmed in the present experiment. It was found that at the hydrate reaction it has the property that can be hardened within the limit of pore diameterar a specific size rather than there is the internal gap filling capacity due to generating other hydrates.

  • PDF

A Study on the Basic Physical Properties of Concrete Containing Waterproofing Agent (${\cdot}$습도 조건이 구체방수제를 혼입한 모르타르의 기초물성에 미치는 영향)

  • Han Da Hee;Park Hee Gon;Kim Kwang Ki;Kim Sang Kyu;Song Byung Chang;Jung Sang Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.777-780
    • /
    • 2004
  • Recently, the use of structure compound waterproof agent (hereinafter referred to as 'SCWA') that is used when manufacturing concrete for concrete structures, increases in quantity. However, while it is expected that the SCWA that is mixed in the concrete inside can significantly affect the change of physical properties that lift the internal force of a structure. This study has been conducted through an experiment for the effects of cement hardener on the formation of microscopic texture, and newly generated hydrates from that result were not confirmed in the. present experiment. It was found that at the hydrate reaction it has the property that can be hardened within the limit of pore diameterar a specific size rather than there is the internal gap filling capacity due to generating other hydrates.

  • PDF

THE EFFECT OF SPRUE DESIGN ON THE INTERNAL POROSITY OF TITANIUM CASTINGS (주입선 설계가 티타늄 주조체의 내부기포 발생에 미치는 영향)

  • Heo Sook-Myeong;Jeon Young-Chan;Jeong Chang-Mo;Lim Jang-Seop;Jeong Hee-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.2
    • /
    • pp.147-156
    • /
    • 2006
  • Statement of problem: The high melting temperature and chemical reactivity of titanium necessitates casting machines different from those used in conventional casting. Despite the new developments in Ti casting systems , inadequate mold filling and internal porosity are frequently observed casting defects. Therefore, the study on the fabrication technique including sprue design to solve these casting defects is still necessary. Purpose: The purpose of this study was to evaluate the effect of sprue design and cross sectional area of sprue on the internal porosity. Materials and methods: 30 simulated cast three units titanium crowns were prepared. 5 cast crowns for each with different sprue design(sinlge sprue, double sprue and plate sprue) of two cross sectional areas (small and large cross sectional areas) were fabricated. The sections of titanium castings were photographed in a microscope at ${\times}100$ magnification to record internal porosities. Results and Conclusion: Within the limits of this study, the following conclusions were drawn: 1. There was a significantly lower in internal porosity of titanium castings for large cross sectional area of sprue group than the small group (P<.05) 2. There was no significant difference in internal porosity among sprue designs in similar cross sectional area of sprue (P>.05).

A SCANNING ELECTRON MICROSCOPIC STUDY ON THE CHANCES OF REPARATIVE DENTIN FORMATION BY THE GLASS IONOMER CEMENT IN CATS (Glass Ionomer시멘트에 의한 상아질구조변화에 관한 주사전자현미경적 연구)

  • Park, S.K.;Woo, Y.H.;Choi, D.K.;Choi, B.B.;Park, N.S.
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.25 no.1
    • /
    • pp.227-242
    • /
    • 1987
  • This study was designed to investigate the pulpal effects of the glass ionomer cement. (Lining cement, G-C Co. Japan) For this purpose, 10 cats were selected, and Class V cavities were prepared on canines of the cats. One experimental group was filled with glass ionomer cement and the other group was filled with zinc phosphate cement . (G-C Co, Japan) The animals of the experimental and control group were sacrificed at 1,2,3,4,6, weeks after the experiment. For comparison of reparative dentin formation pattern in direction of the pulpal and fractured lateral surface, each of them was observed with scanning electron microscope. The findings led to the following conclusions; 1. Reparative dentin of the glass ionomer cement and zinc phosphate cement filling groups were formed on the internal surface of dentin as the shape of hemispherical and spherical with a rough surface. 2. Some of reparative dentin of the glass ionomer cement filling group was started to form at 1 week after experiment, and at 6 weeks after experiment, it had been increased gradually in number and size. 3. Reparative dentin of zinc phosphate cement filling group was formed vigorously, however, gradually was decreased in number and size, and disappeared at 6 weeks after experiment. 4. During the formation of reparative dentin, peritubular dentins were indistinguishable. 5. The diameter of dentinal tubules of reparative dentin has been decreased, during the reparative dentin formed, and it became very irregularly at 6 weeks after experiment.

  • PDF

Assessment of Cerebral Circulatory Arrest via CT Angiography and CT Perfusion in Brain Death Confirmation

  • Asli Irmak Akdogan;Yeliz Pekcevik;Hilal Sahin;Ridvan Pekcevik
    • Korean Journal of Radiology
    • /
    • v.22 no.3
    • /
    • pp.395-404
    • /
    • 2021
  • Objective: To compare the utility of computed tomography perfusion (CTP) and three different 4-point scoring systems in computed tomography angiography (CTA) in confirming brain death (BD) in patients with and without skull defects. Materials and Methods: Ninety-two patients clinically diagnosed as BD using CTA and/or CTP for confirmation were retrospectively reviewed. For the final analysis, 86 patients were included in this study. Images were re-evaluated by three radiologists according to the 4-point scoring systems that consider the vessel opacification on 1) the venous phase for both M4 segments of the middle cerebral arteries (MCAs-M4) and internal cerebral veins (ICVs) (A60-V60), 2) the arterial phase for the MCA-M4 and venous phase for the ICVs (A20-V60), 3) the venous phase for the ICVs and superior petrosal veins (ICV-SPV). The CTP images were independently reviewed. The presence of an open skull defect and stasis filling was noted. Results: Sensitivities of the ICV-SPV, A20-V60, A60-V60 scoring systems, and CTP in the diagnosis of BD were 89.5%, 82.6%, 67.4%, and 93.3%, respectively. The sensitivity of A20-V60 scoring was higher than that of A60-V60 in BD patients (p < 0.001). CTP was found to be the most sensitive method (86.5%) in patients with open skull defect (p = 0.019). Interobserver agreement was excellent in the diagnosis of BD, in assessing A20-V60, A60-V60, ICV-SPV, CTP, and good in stasis filling (κ: 0.84, 0.83, 0.83, 0.83, and 0.67, respectively). Conclusion: The sensitivity of CTA confirming brain death differs between various proposed 4-point scoring systems. Although the ICV-SPV is the most sensitive, evaluation of the SPV is challenging. Adding CTP to the routine BD CTA protocol, especially in cases with open skull defect, could increase sensitivity as a useful adjunct.

3D FEM simulation for connector crimping process of wire harness (와이어 하네스의 커텍터 압착공정에 대한 3차원 유한요소해석)

  • Gu, S.M.;Yin, Z.H.;Park, J.K.;Choi, H.S.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.245-249
    • /
    • 2009
  • According to the increase of intelligent vehicles many automotive electric components are installed. The wire harness which connects those also increases. The crimping process for compressing the copper wire bundle into the terminal is a key process to assure the good quality of wire harness. For the case of inadequate forming condition many shape failures such as less-filling, over-filling are happen in the crimping process. Even though the quality of crimping shape is satisfactory the quality check for electrical resistance of wire harness is sometime not satisfied the qualification due to large variation of electrical resistance of wire harness under climate test. This large variation is thought to be related with the malfunction automotive electric system and caused by the internal stress of wire, which occurred during the crimping process. In this paper we develop the 3D-FEM simulation scheme and design methodology of optimum terminal shape. Also the effect of terminal shape on the residual stress is discussed.

  • PDF

Finite Element Analysis of an EMC Module for Selecting Epoxy (적합한 Epoxy 선정을 위한 EMC 모듈의 유한요소해석)

  • Lee, Joon-Seong;Hong, Hee-Rok;Jo, Gye-Hyeon;Park, Dong-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6419-6424
    • /
    • 2014
  • The use of the PMP (Protection Module Package) was proposed as a solution for the shorter battery lifetime. The PMP means that a protection circuit consists of a semiconductor single. In this study, basic research was carried out to select a suitable epoxy material of the EMC module through finite element analysis. First, the stress on the external force was compared by the flexural strength analysis. In the following thermal analysis, the temperature change of the EMC module and the internal part was compared using the calculated heating value. Finally, the filling ratio was compared with the injection of the melting epoxy in the EMC module.

Tests of the interface between structures and filling soil of mountain area airport

  • Wu, Xueyun;Yang, Jun
    • Geomechanics and Engineering
    • /
    • v.12 no.3
    • /
    • pp.399-415
    • /
    • 2017
  • A series of direct shear tests were conducted to investigate the frictional properties of the interface between structures and the filling soil of Chongqing airport fourth stage expansion project. Two types of structures are investigated, one is low carbon steel and the other is the bedrock sampled from the site. The influence of soil water content, surface roughness and material types of structure were analyzed. The tests show that the interface friction and shear displacement curve has no softening stage and the curve shape is close to the Clough-Duncan hyperbola, while the soil is mainly shear contraction during testing. The interface frictional resistance and normal stress curve meets the Mohr-Coulomb criterion and the derived friction angle and frictional resistance of interface increase as surface roughness increases but is always lower than the internal friction angle and shear strength of soil respectively. When surface roughness is much larger than soil grain size, soil-structure interface is nearly shear surface in soil. In addition to the geometry of structural surface, the material types of structure also affects the performance of soil-structure interface. The wet interface frictional resistance will become lower than the natural one under specific conditions.

Optoelectronics Properties of In0.27Ga0.73N/GaN Multi-Quantum-Well Structure (In0.27Ga0.73N/GaN 다중 양자우물 구조에 대한 광전기적 특성)

  • Park, Hun-Bo;Bae, In-Ho;Kim, Ki-Hong
    • Korean Journal of Materials Research
    • /
    • v.17 no.9
    • /
    • pp.489-492
    • /
    • 2007
  • Temperature and injection current dependence of elctroluminescence(EL) spectral intensity of the $In_{0.27}Ga_{0.73}N/GaN$ multi-quantum-well(MQW) have been studied over a wide temperature and as a function of injection current level. EL peaks also show significant broadening into higher photon energy region with the increase of injection current. This is explained by the band-filling effect. When temperature is slightly increased to 300 from 15 K, the EL emission peak showed red-blue-red shift. It can be explained by the carrier localization by potential fluctuation of multiple quantum well and band-gap shrinkage as temperature increase. It is found that a temperature-dependent variation pattern of the EL efficiency under very low and high injection currents show a drastic difference. This unique EL efficiency variation pattern with temperature and current is explained field effects due to the driving forward bias in presence of internal(piezo and spontaneous polarization) fields.

Analysis of axisymmetric closed-die forging using UBET (UBET를 이용한 축대칭 형단조 해석)

  • 김동원;김헌영;신수정
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.337-344
    • /
    • 1989
  • The upper bound elemental technique (UBET) is used to simulate the bulk flow characteristics in axisymmetric closed die forging process. Internal flow inside the cavity is predicted using a kinematically admissible velocity field that minimizes the rate of energy consumption. Application of the technique includes an assessment of the formation of flash and of degree of filling in rib-web type cavity using billets with various aspect rations. The technique considering bulging effect is performed in an incremental manner. The results of simulation show how it can be used for the prediction of forging load, metal flow, and free surface profile. The experiments are carried out with plasticine. There are good agreements in forging load and material flow in cavity between the simulation and experiment. The developed program using UBET can be effectively applied to the various forging problems.