• Title/Summary/Keyword: Internal boundary

Search Result 652, Processing Time 0.027 seconds

Application of the Boundary Element Method to Analysis of Assembled plate structures (조립판 구조물 해석을 위한 경계요소법의 적용)

  • 권택진;서일교;이동우;김도훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.121-128
    • /
    • 1997
  • The Boundary Element Method(BEM) has many advantages. Nevertheless the applicability of BEM to structural analysis is seemed to be behind the other methods. This study presents the application of the BEM for analysis of assembled plate structures which is light weight and has a great loading capacity. Firstly, we formulate the boundary integral equation of the single plate, using the biharmonic fundamental solution for plate bending and internal force problems. Nextly, each plates are assembled on 3-dimensional space. In this process, the boundary conditions on assemble line are used. To verify the objectivity and universal validity of analysis by BEM, the results of BEM was compared to that of SAP90 by using FEM.

  • PDF

INVESTIGATION ON CRITERION OF SHOCK-INDUCED SEPARATION IN SUPERSONIC FLOWS

  • Heuy-Dong KIM
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.69-83
    • /
    • 1995
  • A great number of experimental data indicating shock-induced separation(SIS) in internal or external supersonic flows were reviewed to make clear the mechanism of SIS and to present the criterion of turbulent boundary layer separation. The interesting conclusions were obtained for the considerably wide range of flow geometries that the incipient separation is almost independent of the flow geometries, and that it is relatively unaffected by changes in gas specific heat, and boundary layer Reynolds number, Furthermore, the pressure rise necessary to separate boundary layer in external flows was found to be applicable to SIS in overexpanded propulsion nozzles. This is due to the fact that the SIS phenomenon caused by the interaction between shock waves and turbulent boundary layers is processed through a supersonic deceleration. This is, the SIS in almost all of interacting flow fields is governed by the concept of free interaction, and criterion of SIS is only a Function of upstream Mach number.

  • PDF

The Impact of Internal and External Sources of Knowledge on Innovation Performance in Independent Firms and Business Group Affiliates (기업의 내·외부 지식원천이 혁신성과에 미치는 영향과 기업집단 효과)

  • Kim, Ji-Hee;Lee, Ji-Hwan
    • Knowledge Management Research
    • /
    • v.16 no.1
    • /
    • pp.171-191
    • /
    • 2015
  • This paper investigates how internal knowledge dependency and its interaction with external knowledge adoption affect innovation performance in Korean companies. We categorize innovation performance into exploratory innovation and exploitative innovation. Especially, we examine business group effects as group headquarters and sister subsidiaries holistically form the boundary of the firm. Our empirical results first suggest that the degree of internal knowledge dependency is positively associated with exploitative innovation, but negatively with exploratory innovation. Second, internal knowledge dependency is more negatively related to exploratory innovation in independent firms than in business group affiliates. Third, independent firms' adoption of external knowledge tends to strengthen the positive relationship between internal knowledge dependency and exploitative innovation. Finally, exploitative external knowledge search appears to strengthen the negative relationship between internal knowledge dependency and exploratory innovation in both types of firms.

A Study on the Boundary Identified in the Immersive Space (이머시브 공간에서 나타나는 경계성 연구)

  • Son, Seo-Yeon;Ahn, Seong-Mo
    • Korean Institute of Interior Design Journal
    • /
    • v.27 no.2
    • /
    • pp.45-54
    • /
    • 2018
  • Immersive space is a new type of space, which is converged with other domains and expressed in various ways and here, a mutual exchange between space and participants is realized with active intervention of participants. The purpose of this study is to examine boundary changes and characteristics in virtual space and reality or inside and outside, focusing on immersive space. For this study, a case analysis was conducted, based on the key words regarding flow experience and boundary characteristics in immersive space. The boundary characteristics extracted are as follow. First, while immersive space is overlapped in many different ways, the boundary in space gradually changes and one unique and convergent space is formed. Also, a combination of overlap is made with internal and external physical force and a convergent boundary is created. Second, forms are mixed in diverse ways and an unrealistic boundary space is revealed. For new experience, it has familiar, but new experiential characteristics and also shows an expanded boundary by the medium of different domains. Third, a simultaneous space, based on variability of time and space, has an ambiguous boundary due to a meaningless physical boundary of space and changing into a space region constantly, it becomes an unlimited variable space. Fourth, a linear expansion-based emergent space has nonlinearity, which creates a meaningless boundary, recognized as an irregular, dynamic and transformative space and expands to a creative space. In conclusion, it is anticipated that based on diverse characteristics found in immersive space, this study would give unlimited inspiration to many design fields and art creation activities and contribute to a further development through continued research on immersive space.

MATHEMATICAL MODELLING AND ITS SIMULATION OF A QUASI-STATIC THERMOELASTIC PROBLEM IN A SEMI-INFINITE HOLLOW CIRCULAR DISK DUE TO INTERNAL HEAT GENERATION

  • Gaikwad, Kishor R.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.1
    • /
    • pp.69-81
    • /
    • 2015
  • The present paper deals with the determination of temperature, displacement and thermal stresses in a semi-infinite hollow circular disk due to internal heat generation within it. Initially the disk is kept at arbitrary temperature F(r, z). For times t > 0 heat is generated within the circular disk at a rate of g(r, z, t) $Btu/hr.ft^3$. The heat flux is applied on the inner circular boundary (r = a) and the outer circular boundary (r = b). Also, the lower surface (z = 0) is kept at temperature $Q_3(r,t)$ and the upper surface ($Z={\infty}$) is kept at zero temperature. Hollow circular disk extends in the z-direction from z = 0 to infinity. The governing heat conduction equation has been solved by using finite Hankel transform and the generalized finite Fourier transform. As a special case mathematical model is constructed for different metallic disk have been considered. The results are obtained in series form in terms of Bessel's functions. These have been computed numerically and illustrated graphically.

A Study on the Predictive Causal Model of Codependency for introducing Implications in Family Welfare Policy - Basing on the application of Triple ABC-X Model -

  • Ju, Sunyoung;Kweon, Seong-Ok;Park, Hwieseo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.3
    • /
    • pp.139-145
    • /
    • 2017
  • The purpose of this study is to establish a predictive causal model of codependency that is a main issue of family problem on the base of Triple ABC-X model which is a kind of family stress model. For the purpose of this study, we reviewed the concept and characteristics of codependency, affecting factors of codependency, and then reviewed the basic concept and logic of Triple ABC-X Model as theoretical viewpoint for the purpose of establishing a predictive causal model of codependency. We established it through examining main variables of codependency from Triple ABC-X Model. Main ingredients of the predictive causal model include boundary ambiguity, internal working model, internal and external locus of control, self-regard, social support, individual maladjustment etc. We established a predictive model of codependency basing on logic inferences among the variables. This study is expected to be used basic data to introduce some implications and for hereafter research.

A New Experiment on Interaction of Normal Shock Wave and Turbulent Boundary Layer in a Supersonic Diffuser (초음속디퓨져에서 발생하는 수직충격파의 난류경계층의 간섭에 관한 실험)

  • 김희동;홍종우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2283-2296
    • /
    • 1995
  • Experiments of normal shock wave/turbulent boundary layer interaction were conducted in a supersonic diffuser. The flow Mach number just upstream of the normal shock wave was in the range of 1.10 to 1.70 and Reynolds number based upon the turbulent boundary layer thickness was varied in the range of 2.2*10$^{[-994]}$ -4.4*10$^{[-994]}$ . The wall pressures in streamwise and spanwise directions were measured for two test cases, in which the turbulent boundary layer thickness incoming into the supersonic diffuser was changed. The results show that the interactions of normal shock wave with turbulent boundary layer in the supersonic diffuser can be divided into three patterns, i.e., transonic interaction, weak interaction and strong interaction, depending on Mach number. The weak interactions generate the post-shock expansion which its strength is strong as the Mach number increases and the strong interactions form the pseudo-shock waves. From the spanwise measurements of wall pressure, it is known that if the flow Mach number is low, the interacting flow fields essentially appear two-dimensional, but they have an apparent 3-dimensionality for the higher Mach numbers.

Effect of Boundary Conditions on Failure Probability of Corrosion Pipeline (부식 배관의 경계조건이 파손확률에 미치는 영향)

  • 이억섭;편장식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.873-876
    • /
    • 2002
  • This paper presents the effect of internal corrosion, external corrosion, material properties, operation condition, earthquake, traffic load and design thickness in pipeline on the failure prediction using a failure probability model. A nonlinear corrosion is used to represent the loss of pipe wall thickness with time. The effects of environmental, operational, and design random variables such as a pipe diameter, earthquake, fluid pressure, a corrosion rate, a material yield stress and a pipe thickness on the failure probability are systematically investigated using a failure probability model for the corrosion pipeline.

  • PDF