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ABSTRACT. The present paper deals with the determination of temperature, displacement and

thermal stresses in a semi-infinite hollow circular disk due to internal heat generation within

it. Initially the disk is kept at arbitrary temperature F (r, z). For times t > 0 heat is generated

within the circular disk at a rate of g(r, z, t) Btu/hr.ft3. The heat flux is applied on the inner

circular boundary (r = a) and the outer circular boundary (r = b). Also, the lower surface

(z = 0) is kept at temperature Q3(r, t) and the upper surface (z = ∞) is kept at zero temper-

ature. Hollow circular disk extends in the z-direction from z = 0 to infinity. The governing

heat conduction equation has been solved by using finite Hankel transform and the general-

ized finite Fourier transform. As a special case mathematical model is constructed for different

metallic disk have been considered. The results are obtained in series form in terms of Bessel’s

functions. These have been computed numerically and illustrated graphically.

1. INTRODUCTION

During the second half of the twentieth century, non-isothermal problems of the theory of

elasticity became increasingly important. This is mainly due to their many applications in

widely diverse fields. First, the high velocities of modern aircraft give rise to aerodynamic

heating, which produces intense thermal stresses, reducing the strength of the aircraft struc-

ture. Second, in the nuclear field, the extremely high temperatures and temperature gradients

originating inside nuclear reactors influence their design and operations [1].

Nowacki [2] has determined the steady-state thermal stresses in a circular plate subjected

to an axi-symmetric temperature distribution on the upper surface with zero temperature on

the lower surface and with the circular edge thermally insulated. Obata and Noda [3] stud-

ied the steady thermal stresses in a hollow circular cylinder and a hollow sphere made of a

functionally gradient material. Ootao et al. [4] have studied the theoretical analysis of a three
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dimensional transient thermal stress problem for a nonhomogeneous hollow circular cylinder

due to a moving heat source in the axial direction from the inner and outer surfaces. Ishihara at

al. [5] discussed the theoretical analysis of thermoelastoplastic deformation of a circular plate

due to a partially distributed heat supply. Eduardo at al. [6] discussed the generalized boundary

integral equation for heat conduction in non-homogeneous media. Bao-Lin Wang et al. [7]

have establishes a solution method for the one-dimensional transient temperature and thermal

stress fields in non-homogeneous materials. Cheng-Hung Huang et al. [8] have determined

an inverse hyperbolic heat conduction problem in estimating surface heat flux by the conju-

gate gradient method. Zhengzhu Dong et al. [9] have studied the thermal bending of circular

plates for non-axisymmetrical problems. Ghadle et al. [10] have solved nonhomogeneous heat

conduction problem and its thermal deflection due to internal heat generation in a thin hollow

circular disk. Recently, Gaikwad [11] analysed thermoelastic deformation of a thin hollow

circular disk due to partially distributed heat supply.

In this article, we analyzed the quasi-static thermal stresses in a semi-infinite hollow cir-

cular disk due to internal heat generation under unsteady-state temperature distribution and

determined the expressions for temperature, displacement and thermal stresses. Initially the

disk is kept at arbitrary temperature F (r, z). For times t > 0 heat is generated within the circu-

lar disk at a rate of g(r, z, t) Btu/hr.ft3. The heat flux is applied on the inner circular boundary

(r = a) and the outer circular boundary (r = b). Also, the lower surface (z = 0) is kept

at temperature Q3(r, t) and the upper surface (z = ∞) is kept at zero temperature. Hollow

circular disk extends in the z-direction from z = 0 to infinity. The governing heat conduction

equation has been solved by using finite Hankel transform and the generalized finite Fourier

transform. The results are obtained in series form in terms of Bessel’s functions. As a special

case mathematical model is constructed for different metallic disk have been considered. The

results are obtained in series form in terms of Bessels functions and these have been computed

numerically and illustrated graphically.

It is believed that, this particular problem has not been considered by any one. This is new

and novel contribution to the field of thermoelasticity. The results presented here will be more

useful in engineering problem particularly, in the determination of the state of strain in hollow

circular disk constituting foundations of containers for hot gases or liquids, in the foundations

for furnaces etc.

2. MATHEMATICAL FORMULATION OF THE PROBLEM

Consider a semi-infinite hollow circular disk occupying the space D: a ≤ r ≤ b, 0 ≤ z < ∞
under an unsteady temperature field due to internal heat generation within it. Initially, the

circular disk is at arbitrary temperature F (r, z). For times t > 0 heat is generated within the

circular disk at a rate of g(r, z, t) Btu/hr.ft3. The heat flux is applied on the inner circular

boundary (r = a) and the outer circular boundary (r = b). Also, the lower surface (z = 0)
is kept at temperature Q3(r, t) and the upper surface (z = ∞) is kept at zero temperature.

Hollow circular disk extends in the z-direction from z = 0 to infinity.
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Under these realistic prescribed conditions, temperature, displacement and thermal stresses

in a semi-infinite hollow circular disk due to internal heat generation are required to be deter-

mined.

The temperature of the disk satisfies the heat conduction equation as

∂2T

∂r2
+

1

r

∂T

∂r
+

∂2T

∂z2
+

g(r, z, t)

K
=

1

α

∂T

∂t
in a ≤ r ≤ b, 0 ≤ z < ∞, for t > 0 (1)

with boundary conditions,

K
∂T

∂r
= Q1(z, t) at r = a, for t > 0 (2)

K
∂T

∂r
= Q2(z, t) at r = b, for t > 0 (3)

T = Q3(r, t) at z = 0, for t > 0 (4)

T = 0 at z = ∞, for t > 0 (5)

and the initial condition

T = F (r, z) in a ≤ r ≤ b, 0 ≤ z < ∞ for t = 0, (6)

where T = T (r, z, t), K, α are the thermal conductivity and thermal diffusivity of the material

of the circular disk.

FIGURE 1. Geometry of the heat conduction problem.



72 K. R. GAIKWAD

The displacements equations of thermoelasticity have the form

Ui,k,k +

(
1 + ν

1− ν

)
e,i = 2

(
1 + ν

1− ν

)
atT,i

e = Uk,k; k, i = 1, 2

where Ui is the displacements component, e is the dilatation, T is the temperature and ν and at
are respectively, the Poisson ratio and linear coefficients of thermal expansions of the circular

disk material.

Introducing Ui = U,i i = 1, 2,
we have

∇2
1U = (1 + ν)atT,

∇2
1 =

∂2

∂k21
+

∂2

∂k22
σij = 2μ(U,ij − δijU,kk) i, j, k = 1, 2

where μ is Lames constant and δij is the well-known Kronecker symbol.

In the axisymmetric case,

U = U(r, z, t) T = (r, z, t)

and the differential equation governing the displacements function U = U(r, z, t) is given by

∂2U

∂r2
+

1

r

∂U

∂r
= (1 + ν)atT (7)

with U = 0 at r = a, r = b for all time t (8)

Initially

T = U = σrr = σθθ = F (r, z) at t= 0. (9)

The stress components σrr and σθθ of the circular disk are given by,

σrr = −2μ

r

∂U

∂r
(10)

σθθ = −2μ
∂2U

∂r2
(11)

while each case of the stress functions σrz , σzz and σθz are zero within the circular disk in the

plane stress of the stress.

Equations (1) to (11) constitute the mathematical formulation of the problem under consid-

eration.
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3. SOLUTION OF THE HEAT CONDUCTION PROBLEM

To obtain the expression for temperature function T (r, z, t); firstly we define the finite

Fourier transform and its inverse transform over the variable z in the range 0 ≤ z < ∞
defined in [12] as,

T (r, η, t) =

∫ ∞

z′=0
K(η, z′).T (r, z′, t).dz′ (12)

T (r, z, t) =

∫ ∞

η=0
K(η, z).T (r, η, t).dη (13)

where

K(η, z) =

√
2

π
sin(ηz).

and η1, η2, . . . are the positive roots of the transcendental equation

sin(ηph) = 0, p = 1, 2, . . .

i.e.

ηp =
pπ

h
, p = 1, 2, 3, . . .

Applying the finite Fourier transform defined in Eq. (12) to Eq. (1) and using the conditions

(2)-(6), one obtains

∂2T

∂r2
+

1

r

∂T

∂r
− η2p +

g(r, ηp, t)

K
=

1

α

∂T

∂t
(14)

with

K
∂T

∂r
= Q1(ηp, t) at r = a, for t > 0 (15)

K
∂T

∂r
= Q2(ηp, t) at r = b, for t > 0 (16)

T = F (r, ηp) in a ≤ r ≤ b, for t = 0, (17)

where T = T (r, ηp, t).
Secondly, we define finite Hankel transform and its inverse transform over the variable r in

the range a ≤ r ≤ b as defined in [12] respectively as,

T (βm, ηp, t) =

∫ b

r′=a
r′.K0(βm, r′).T (r′, η, t).dr′ (18)

T (r, η, t) =

∞∑
m=1

K0(βm, r).T (βm, η, t) (19)

where

K0(βm, r) =
π√
2

βmJ ′
0(βmb).Y ′

0(βmb)[
1− J

′2
0 (βmb)

J
′2
0 (βma)

] [
J0(βmr)

J ′
0(βmb)

− Y0(βmr)

Y ′
0(βmb)

]
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and β1, β2, β3, . . . are the positive root of transcendental equation

J ′
0(βa)

J ′
0(βb)

− Y ′
0(βa)

Y ′
0(βb)

= 0

This transform satisfies the relation

H

[
∂2T

∂r2
+

1

r

∂T

∂r

]
= −β2

mT (βm, t)

Applying the finite Hankel transform defined in Eq. (18) to Eq. (14) and using the conditions

(15)-(17, one obtains

∂T (βm, ηp, t)

∂t
+ α(β2

m + η2p)T (βm, ηp, t) = A(βm, ηp, t) (20)

T (βm, ηp, t) = F (βm, ηp), for t = 0, (21)

where

A(βm, ηp, t) =
α

K
g(βm, ηp, t) +

α

K

{
aK0(βm, a)Q1(ηp, t)− bK0(βm, b)Q2(ηp, t)

+
dK0(ηp, z)

dz

∣∣∣
z=0

Q3(βm, t)

} (22)

Solution of the Eq. (20) is obtained as

T (βm, ηp, t) = e−α(β2
m+η2p)t

[
F (βm, ηp) +

∫ t

t′=0
eα(β

2
m+η2p)t

′
A(βm, ηp, t

′).dt′
]

(23)

Finally taking inverse finite Hankel transform defined in Eq. (19) and inverse finite Fourier

transform defined in Eq. (13), one obtains the expressions of the temperature T (r, z, t) as

T (r, z, t) =

∞∑
m=1

K0(βm, r)

∫ ∞

η=0
K(η, z).e−α(β2

m+η2)t

{∫ b

r′=a

∫ ∞

z′=0
r′.K0(βm, r′).K(η, z′).F (r′, z′).dr′.dz′

+

∫ t

t′=0
e−α(β2

m+η2)t′ .

[
α

k

∫ b

r′=a

∫ ∞

z′=0
r′.K0(βm, r′).K(η, z′).g(r′, z′, t′).dr′.dz′

+
α

K
(a.K0(βm, a)− b.K0(βm, b))

∫ ∞

z′=0
K(η, z′).Q1,2(z

′, t′).dz′

+

√
2

π

α

K
.η.

∫ b

r′=a
r′.K0(βm, r′).Q3(r

′, t′).dr′
]
dt′
}
dη

(24)
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4. THERMOELASTIC DISPLACEMENT POTENTIAL U

To obtain the displacement function U , using Eq. (24) in Eq. (7) one obtains,

∂2U

∂r2
+

1

r

∂U

∂r
= (1 + ν)at

∞∑
m=1

K0(βm, r)

∫ ∞

η=0
K(η, z).e−α(β2

m+η2)t

{∫ b

r′=a

∫ ∞

z′=0
r′.K0(βm, r′).K(η, z′).F (r′, z′).dr′.dz′

+

∫ t

t′=0
e−α(β2

m+η2)t′ .

[
α

k

∫ b

r′=a

∫ ∞

z′=0
r′.K0(βm, r′).K(η, z′).g(r′, z′, t′).dr′.dz′

+
α

K
(a.K0(βm, a)− b.K0(βm, b))

∫ ∞

z′=0
K(η, z′).Q1,2(z

′, t′).dz′

+

√
2

π

α

K
.η.

∫ b

r′=a
r′.K0(βm, r′).Q3(r

′, t′).dr′
]
dt′
}
dη

(25)

Solving Eq. (25), one obtains

U = −(1 + ν)at

∞∑
m=1

1

β2
m

K0(βm, r)

∫ ∞

η=0
K(η, z).e−α(β2

m+η2)t

{∫ b

r′=a

∫ ∞

z′=0
r′.K0(βm, r′).K(η, z′).F (r′, z′).dr′.dz′

+

∫ t

t′=0
e−α(β2

m+η2)t′ .

[
α

k

∫ b

r′=a

∫ ∞

z′=0
r′.K0(βm, r′).K(η, z′).g(r′, z′, t′).dr′.dz′

+
α

K
(a.K0(βm, a)− b.K0(βm, b))

∫ ∞

z′=0
K(η, z′).Q1,2(z

′, t′).dz′

+

√
2

π

α

K
.η.

∫ b

r′=a
r′.K0(βm, r′).Q3(r

′, t′).dr′
]
dt′
}
dη

(26)

5. QUASI-STATIC THERMAL STRESSES

Using Eq. (26) in Eqs. (10) and (11), one obtains the expression for thermal stresses as,

σrr = −2(1 + ν)atμ
∞∑

m=1

1

rβm
.K1(βm, r)

∫ ∞

η=0
K(η, z).e−α(β2

m+η2)t

{∫ b

r′=a

∫ ∞

z′=0
r′.K0(βm, r′).K(η, z′).F (r′, z′).dr′.dz′

+

∫ t

t′=0
e−α(β2

m+η2)t′ .

[
α

k

∫ b

r′=a

∫ ∞

z′=0
r′.K0(βm, r′).K(η, z′).g(r′, z′, t′).dr′.dz′
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+
α

K
(a.K0(βm, a)− b.K0(βm, b))

∫ ∞

z′=0
K(η, z′).Q1,2(z

′, t′).dz′

+

√
2

π

α

K
.η.

∫ b

r′=a
r′.K0(βm, r′).Q3(r

′, t′).dr′
]
dt′
}
dη

(27)

σθθ = −2(1 + ν)atμ

∞∑
m=1

1

βm

(
βmK0(βm, r)− K1(βm, r)

r

)∫ ∞

η=0
K(η, z).e−α(β2

m+η2)t

{∫ b

r′=a

∫ ∞

z′=0
r′.K0(βm, r′).K(η, z′).F (r′, z′).dr′.dz′

+

∫ t

t′=0
e−α(β2

m+η2)t′ .

[
α

k

∫ b

r′=a

∫ ∞

z′=0
r′.K0(βm, r′).K(η, z′).g(r′, z′, t′).dr′.dz′

+
α

K
(a.K0(βm, a)− b.K0(βm, b))

∫ ∞

z′=0
K(η, z′).Q1,2(z

′, t′).dz′

+

√
2

π

α

K
.η.

∫ b

r′=a
r′.K0(βm, r′).Q3(r

′, t′).dr′
]
dt′
}
dη

(28)

where K1(βm, r) = ∂
∂r [K0(βm, r)]

6. SPECIAL CASES AND NUMERICAL CALCULATIONS

Setting
Q1(z, t) = Q2(z, t) = e−z.e−At,

Q3(r, t) = (r2 − a2)2(r2 − b2)2.e−At,

F (r, z) = (r2 − a2)2(r2 − b2)2.e−z ,

g(r, z, t) = giδ(r − r1)δ(z − z1)δ(t− τ)Btu/hr.ft3,

where δ is the Derac-delta function and A > 0.

We noticed that

∫ b

r′=a
r′.K0(βm, r′).Q3(r

′, t′).dr′ =

8

{
b(40a2b2β4

m − 32b4β4
m − 8a4β4

m + 2304b2β2
m − 576a2β2

m − 18432)J1(βma)
−b(40a2b2β4

m − 32b4β4
m − 8a4β4

m + 2304b2β2
m − 576a2β2

m − 18432)J1(βma)

}
π
√
Nβ11

m J1(βma)J1(βmb)Y1(βmb)
(29)
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r′=a

∫ ∞

z′=0
r′.K0(βm, r′).K(ηp, z

′).g(r′, z′, t′).dr′.dz′ =

√
π.r1

βmJ0(βmb).Y0(βmb)[
1− J2

0 (βmb)

J2
0 (βma)

]1/2
[
J0(βmr1)

J0(βmb)
− Y0(βmr1)

Y0(βmb)

]
× sin(ηpz1)

(30)

The heat source g(r, z, t) is an instantaneous line heat source of strength gi=50 Btu/hr.ft3,

situated at center of the circular disk along radial direction and releases its instantaneously at

the time t = τ = 2 hr.

Dimension
The constants associated with the numerical calculation are taken as

Inner radius of a circular disk a = 1 ft,

outer radius of a circular disk b = 2 ft,

Central circular path of circular disk r1= 1.5 ft,

Height of a circular disk z = 10 ft,

Central height of a circular disk z1 = 5 ft,

Material properties
The numerical calculation has been carried out for a semi-infinite hollow circular disk with

the material properties as,

TABLE 1. Thermal properties of materials.

Material K, cp, ρ, α, λ, E, ν
Btu/hr. ft. 0F Btu/lb 0F lb/ft3 ft2/hr 1/F GPa

Aluminum(Al) 117 0.208 169 3.33 12.84 ×10−6 70 0.35

Copper(Cu) 224 0.091 558 4.42 9.3 ×10−6 117 0.36

Iron(Fe) 36 0.104 491 0.70 6.7 ×10−6 193 0.21

Silver(Ag) 242 0.056 655 6.60 10.7 ×10−6 83 0.37

Roots of the transcendental equation

The first five positive root of the transcendental equation
J ′
0(βa)

J ′
0(βb)

− Y ′
0(βa)

Y ′
0(βb)

= 0 as defined

in [12] are β1 = 3.1965, β2 = 6.3123, β3 = 9.4445, β4 = 12.5812, β5 = 15.7199.

For convenience, we set

A =
1

103
, B =

−2(1 + ν) at
103

, C =
−2(1 + ν)μat

103
.

The numerical calculation has been carried out with help of computational mathematical soft-

ware Mathcad-2007, and the graphs are plotted with the help of Excel (MS Office-2007).
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7. DISCUSSION OF THE RESULTS

In this study, we analyzed quasi static thermal stresses in a semi-infinite hollow circular disk

due to internal heat generation under unsteady-state temperature distribution. As an illustration,

we carried out numerical calculations for a hollow circular disk made up of different metals viz.

Aluminium, Copper, Iron (pure), Silver and examined the thermoelastic behavior in the state

for the temperature, displacement and thermal stresses in the radial direction.

FIGURE 2. Temperature distribution T/A in radial direction.

Figure 1, shows the variation of temperature T versus radius r, it is clear that temperature

is maximum at the inner boundary surface (r = 1) and decreases from outer boundary surface

with the increase of radius r. It becomes zero at the (r = 1.75) of the circular disk.

Figure 2, shows the variation of displacement U versus radius r, it is clear that displacement

is zero at (r = 1.9) and maximum is occur at (r = 1.4) of the circular disk.

Figure 3, shows the variation of radial stresses versus radius, it is seen that σrr is zero at

the inner boundary surface (r = 1) and increases from outer boundary surface (r = 2) with

the increase of radius r. It is clear that maximum stress is occur at the middle surface of the

circular disk.

Figure 4, shows the variation of axial stresses versus radius, it is seen that σθθ is maximum

at (r = 1.4) and develops the compressive stresses in radial direction.

We can summarize that, the temperature, displacement and thermal stresses occurs near heat

source, due to internal heat generation in a hollow circular disk within it. The numerical values

of the temperature, displacement and stresses for the disk of metals Steel, Iron, Aluminum and

Copper are in the proportion and follows relation Iron ≤ Aluminum ≤ Copper ≤ Silver. It is

clear that, these values are directly proportional to the thermal conductivity.



MATHEMATICAL MODELLING AND ITS SIMULATION IN A HOLLOW CIRCULAR DISK 79

FIGURE 3. Displacement function U/B in radial direction.

FIGURE 4. Radial Stress function σrr/C in radial direction.

8. CONCLUDING REMARKS

In this article, we analyzed the quasi-static thermoelastic problem in a semi-infinite hollow

circular cylinder under unsteady-state temperature field due to internal heat generation within
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FIGURE 5. Axial Stress function σθθ/C in radial direction.

it. The present method is based on the direct method, using the finite Hankel transform and

the generalized finite Fourier transform. As a special case mathematical model is constructed

for different metallic disk have been considered. The numerical results are compared with

different metal disks. We conclude that, the displacement and stresses are proportional to the

thermal conductivity of the metal of the disk. From the figure of displacement and stresses, it

can be observed that direction of heat flow and direction of body displacement are opposite.

Due to heat generation within the hollow circular disk, the displacement function develops the

tensile stresses, whereas the radial and axial stresses develops the compressive stresses in radial

direction.

The results presented here will be useful in engineering problems, particularly in aerospace

engineering for stations of a missile body not influenced by nose tapering. Also, any partic-

ular case of special interest can be derived by assigning suitable values to the parameters and

functions in the expressions (24)–(28).
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