• Title/Summary/Keyword: Internal Waves

Search Result 283, Processing Time 0.031 seconds

The Effect of Internal Row on Marine Riser Dynamics (Riser의 내부유체 흐름이 Riser 동적반응에 미치는 영향)

  • Hong, Nam-Seeg
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.1
    • /
    • pp.75-90
    • /
    • 1995
  • A mathematical model for the dynamic analysis of a riser system with the inclusion of internal flow and nonlinear effects due to large structural displacements is developed to investigate the effect of internal flow on marine riser dynamics. The riser system accounts fir the nonlinear boundary conditions and includes a steady flow inside the pipe which is modeled as an extensible or inextensible. tubular beam subject to nonlinear three dimensional hydrodynamic loads such as current or wave excitation. Galerkin's finite element approximation and time incremental operator are implemented to derive the matrix equation of equilibrium for the finite element system and the extensibility or inextensibility condition is used to reduce degree of freedom of the system and the required computational time in the case of a nonlinear model. The algorithm is implemented to develop computer programs used in several numerical applications. The investigations of the effect of infernal flow on riser vibration due to current or wave loading are performed according to the change of various parameters such as top tension, internal flow velocity, current velocity, wave period, and so on. It is found that the effect of internal flow can be controlled by the increase of top tension. However, careful consideration has to be given in the design point particularly for the long riser under the harmonic loading such as waves. And it is also found that the consideration of nonlinear effects due to large structural displacements increases the effect of internal flow on riser dynamics.

  • PDF

Usefulness of Impulse Oscillometry in Predicting the Severity of Bronchiectasis

  • Ji Soo Choi;Se Hyun Kwak;Min Chul Kim;Chang Hwan Seol;Seok-Jae Heo;Sung Ryeol Kim;Eun Hye Lee
    • Tuberculosis and Respiratory Diseases
    • /
    • v.87 no.3
    • /
    • pp.368-377
    • /
    • 2024
  • Background: Bronchiectasis is a chronic respiratory disease that leads to airway inflammation, destruction, and airflow limitation, which reflects its severity. Impulse oscillometry (IOS) is a non-invasive method that uses sound waves to estimate lung function and airway resistance. The aim of this study was to assess the usefulness of IOS in predicting the severity of bronchiectasis. Methods: We retrospectively reviewed the IOS parameters and clinical characteristics in 145 patients diagnosed with bronchiectasis between March 2020 and May 2021. Disease severity was evaluated using the FACED score, and patients were divided into mild and moderate/severe groups. Results: Forty-four patients (30.3%) were in the moderate/severe group, and 101 (69.7%) were in the mild group. Patients with moderate/severe bronchiectasis had a higher airway resistance at 5 Hz (R5), a higher difference between the resistance at 5 and 20 Hz (R5-R20), a higher resonant frequency (Fres), and a higher area of reactance (AX) than patients with mild bronchiectasis. R5 ≥0.43, resistance at 20 Hz (R20) ≥0.234, R5-R20 ≥28.3, AX ≥1.02, reactance at 5 Hz (X5) ≤-0.238, and Fres ≥20.88 revealed significant univariable relationships with bronchiectasis severity (p<0.05). Among these, only X5 ≤-0.238 exhibited a significant multivariable relationship with bronchiectasis severity (p=0.039). The receiver operating characteristic curve for predicting moderate-to-severe bronchiectasis of FACED score based on IOS parameters exhibited an area under the curve of 0.809. Conclusion: The IOS assessed by the disease severity of FACED score can effectively reflect airway resistance and elasticity in bronchiectasis patients and serve as valuable tools for predicting bronchiectasis severity.

Development of Complementary Mild-slope Equation for Stream Function Over Permeable Bed (투수층에 적용 가능한 흐름함수방식의 확장형 완경사방정식의 개발)

  • Kim, Gunwoo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.6
    • /
    • pp.758-765
    • /
    • 2016
  • In this study, wave damping due to a permeable bed of finite depth was modelled using a complementary mild-slope equation for stream function. The energy dissipating term in the mild-slope equation was presented in terms of stream function. In order to prevent re-reflection of reflected waves along the outer boundary, a delta-function-shaped source function was derived to generate a wave in a computational domain. Numerical experiments were conducted to measure the reflection coefficient of waves over a planar slope for various incident wave periods. The numerical result of the proposed model was compared with that of an integral equation method, showing good agreement in general. However, the proposed model showed relatively higher transmission rate for the larger permeability and the longer wavelength.

Experimental Study on Motion of FPSO and Characteristics of Mooring System according to Turret Position (터렛 위치에 따른 FPSO 거동 및 계류시스템 특성에 대한 실험 연구)

  • Lee, Dong-Yeop;Hong, Jang-Pyo;Cho, Seok-Kyu;Kim, Yoon-Ho;Sung, Hong-Gun;Seo, Jang-Hoon;Kim, Dae-Woong;Kim, Byung-Woo;Seo, Yong-Seok
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.143-153
    • /
    • 2015
  • This paper presents the results of an experimental study on the motion of an FPSO (Floating production storage and off-loading) and the characteristics of the mooring systejavascript:confirm_mark('abe', '1');m according to the turret position. Model tests of a turret-moored FPSO were carried out in the Ocean Engineering basin of KRISO. The FPSO was moored using an internal turret and catenary mooring. The models (1/60 scale) that were prepared included the FPSO, turret, and mooring lines. The experiments were conducted in irregular waves and combined environments, with waves, currents, and winds. A time-domain simulation was performed using OrcaFlex. The motion response and mooring line tension from the present calculations were compared with the results of experiments, and the agreement was fairly good. In addition, the results showed that the weathervaning stability was improved when the position of the turret was moved in the bow direction.

Model Test of Dual-Buoy Wave Energy Converter using Multi-resonance (다중 공진을 이용한 이중 부이 파력발전장치의 모형실험)

  • Kim, Jeong-Rok;Hyeon, Jong-Wu;Koh, Hyeok-Jun;Kweon, Hyuck-Min;Cho, Il-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.191-198
    • /
    • 2015
  • In this study, we proposed a new type of dual-buoy wave energy converter (WEC) exploiting multi-resonance and analyzed the experimental results from a model test in a 2-D wave flume. A dual-buoy WEC using multi-resonance has two advantages: high efficiency at the resonant frequencies and the potential to extend the frequency range available to extract wave power from the WEC. The suggested WEC was composed of an outer buoy and an inner buoy sliding vertically inside the outer buoy. As the power take-off device, a linear electric generator (LEG) consisting of permanent magnets and coils fixed at each buoy was adopted. Electricity was produced by the relative heave motion between the two buoys. To search for the optimal shape of a dual-buoy WEC, we conducted experiments on the heave motion of a two-body system in regular waves without an LEG installed. Model tests with six combinations of experimental models were conducted in order to find the motion characteristics of a dual-buoy WEC. It was found that model 2, which included a ring-shaped appendage to move the resonant frequency of the outer buoy toward a high value, showed a higher relative heave response amplitude operator (RAO) curve than model 1. In addition, the double-peak shape of the heave RAO curve shown for model 2 indicated the extension of the frequency range for extracting wave power in irregular waves.

An Analysis of the Design Characteristics of 'Vivienne Tam' Collections, for the Launch of Renowned Korean Luxury Fashion Brands (한국 패션 명품 브랜드 론칭을 위만 '비비안 탐' 컬렉션의 디자인 특성 분석)

  • Bae, Soo-Jeong
    • Journal of the Korean Society of Costume
    • /
    • v.59 no.8
    • /
    • pp.82-96
    • /
    • 2009
  • The purpose of this study is to present the basic approach of producing the luxury fashion brands containing of the Korean traditional traits on the basis of traditional transformation with the modern concept, taking the 'Vivienne Tam' 2000's collections. This study has focused on its transformation of the traditional one of China, and made this as the subject of investigation. It's design characteristic could be defined as "modern interpretations of China chic", and it would be divided into two groups. The ingenious mixture of Chinese tradition into the modern chic could be concluded like these. The external characteristics is categorized in the three ways (1) the aesthetic application of the Chinese traditional patterns(dragon, water waves, peony, Japanese apricot flower, bamboo, bats, Chinese characters etc.), (2)the modern application of Chinese traditional costume details(front opening of Chipao, mandarin collar and knot buttons) and (3)the modernization of Chinese traditional technique(knotting, embroidery, beading and paper cutting). To deal with the internal characteristics, (1)the aesthetic mixture of East and West, (2)the formative expressions of the traditional view on the universe and religion are remarkable. The Chinese embodiment and the view of the universe and religion was integrated into the patterns of dragon, water waves, clouds, fire, woods, and metals. In order to afford the creative designer capable of encompassing the East and West, the teaching about the Korean tradition along with the technical and practical aspect of fashion is most important, while encouraging the professional designer to make a sophisticated ones which are attributed to the Korean tradition, and thereby come to be attractive to the world customer. The study about the Korean costumes, traditional colors, the symbolic meaning of the traditional patterns, cuttings, compositions, extending to the various kinds of myths, songs, paintings and crafts are essential for the Korean designer brand to be the global luxury brands.

Evaluation of Creep-Fatigue Damage in 304 Stainless Steel using Ultrasonic Non-Destructive Test (초음파 비파괴 검사를 이용한 AISI 304 스테인리스강의 크리프-피로 손상의 평가)

  • Lee, Sung Sik;Oh, Yong Jun;Nam, Soo Woo
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.12
    • /
    • pp.924-929
    • /
    • 2011
  • It is well known that grain boundary cavitation is the main failure mechanism in austenitic stainless steel under tensile hold creep-fatigue interaction conditions. The cavities are nucleated at the grain boundary during cyclic loading and grow to become grain boundary cracks. The attenuation of ultrasound depends on scattering and absorption in polycrystalline materials. Scattering occurs when a propagation wave encounters microstructural discontinuities, such as internal voids or cavities. Since the density of the creep-fatigue cavities increases with the fatigue cycles, the attenuation of ultrasound will also be increased with the fatigue cycles and this attenuation can be detected nondestructively. In this study, it is found that individual grain boundary cavities are formed and grow up to about 100 cycles and then, these cavities coalesce to become cracks. The measured ultrasonic attenuation increased with the cycles up to cycle 100, where it reached a maximum value and then decreased with further cycles. These experimental measurements strongly indicate that the open pores of cavities contribute to the attenuation of ultrasonic waves. However, when the cavities develop, at the grain boundary cracks whose crack surfaces are in contact with each other, there is no longer any open space and the ultrasonic wave may propagate across the cracks. Therefore, the attenuation of ultrasonic waves will be decreased. This phenomenon of maximum attenuation is very important to judge the stage of grain boundary crack development, which is the indication of the dangerous stage of the structures.

The Experience and Psychological Characteristics of Thermal Diseases from the Heatwave of Construction Workers (건설 노동자의 폭염으로 인한 온열질환 증상의 경험과 심리적 특성)

  • Lee, Jae Young;Lee, Sungsu
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.4
    • /
    • pp.747-757
    • /
    • 2020
  • Purpose: This study noted that even similar environmental conditions caused by the heat wave were differentiated depending on the internal characteristics of the individual, so there was a difference in the extent of the damage. Thus, the relationship between individual psychological characteristics and experiences of the symptoms of thermal diseases was analyzed. Method: The influence of construction workers was analyzed through questioning of individual characteristics and psychological measures of self-esteem, self-esteem, and personality that may be related to heat wave damage, depending on whether they have experienced symptoms of thermal diseases. Results: Logistic regression shows that responsibility affects positive (+) experience of symptoms of heat disease and self-esteem in groups negatively (-) experience of symptoms of heat illness. Conclusion: This study presented basic data as the first study to analyze obsessive compulsive, self-respect and personality of construction workers who are vulnerable to heat waves to identify the psychological characteristics of victims of heat waves.

Modification of Sea Water Temperature by Wind Driven Current in the Mountainous Coastal Sea

  • Choi, Hyo;Kim, Jin-Yun
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.177-184
    • /
    • 2003
  • Numerical simulation on marine wind and sea surface elevation was carried out using both three-dimensional hydrostatic and non-hydrostatic models and a simple oceanic model from 0900 LST, August 13 to 0900 LST, August 15, 1995. As daytime easterly meso-scale sea-breeze from the eastern sea penetrates Kangnung city in the center part as basin and goes up along the slope of Mt. Taegullyang in the west, it confronts synoptic-scale westerly wind blowing over the top of the mountain at the mid of the eastern slope and then the resultant wind produces an upper level westerly return flow toward the East Sea. In a narrow band of weak surface wind within 10km of the coastal sea, wind stress is generally small, less than l${\times}$10E-2 Pa and it reaches 2 ${\times}$ 10E-2 Pa to the 35 km. Positive wind stress curl of 15 $\times$ 10E-5Pa $m^{-1}$ still exists in the same band and corresponds to the ascent of 70 em from the sea level. This is due to the generation of northerly wind driven current with a speed of 11 m $S^{-1}$ along the coast under the influence of south-easterly wind and makes an intrusion of warm waters from the southern sea into the northern coast, such as the East Korea Warm Current. On the other hand, even if nighttime downslope windstorm of 14m/s associated with both mountain wind and land-breeze produces the development of internal gravity waves with a hydraulic jump motion of air near the coastal inland surface, the surface wind in the coastal sea is relatively moderate south-westerly wind, resulting in moderate wind stress. Negative wind stress curl in the coast causes the subsidence of the sea surface of 15 em along the coast and south-westerly coastal surface wind drives alongshore south-easterly wind driven current, opposite to the daytime one. Then, it causes the intrusion of cold waters like the North Korea Cold Current in the northern coastal sea into the narrow band of the southern coastal sea. However, the band of positive wind stress curl at the distance of 30km away from the coast toward further offshore area can also cause the uprising of sea waters and the intrusion of warm waters from the southern sea toward the northern sea (northerly wind driven current), resulting in a counter-clockwise wind driven current. These clockwise and counter-clockwise currents much induce the formation of low clouds containing fog and drizzle in the coastal region.

  • PDF

Development of 3-D Nonlinear Wave Driver Using SPH (SPH을 활용한 3차원 비선형 파랑모형 개발)

  • Cho, Yong Jun;Kim, Gweon Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.559-573
    • /
    • 2008
  • In this study, we newly proposed 3-D nonlinear wave driver utilizing the Navier-Stokes Eq. the numerical integration of which is carried out using SPH (Smoothed Particle Hydrodynamics), an internal wave generation with the source function of Gaussian distribution and an energy absorbing layer. For the verification of new 3-D nonlinear wave driver, we numerically simulate the sloshing problem within a parabolic water basin triggered by a Gaussian hump and uniformly inclined water surface by Thacker (1981). It turns out that the qualitative behavior of sloshing caused by relaxing the external force which makes a free surface convex or uniformly inclined is successfully simulated even though phase error is visible and an inundation height shrinks as numerical simulation more proceeds. For the more severe test, we also simulate the nonlinear shoaling and refraction over uniform beach of wedge shape. It is shown that numerically simulated waves are less refracted than the linear counterpart by Hamiltonian ray theory due to nonlinearity, energy dissipation at the bottom and side walls, energy loss induced by breaking, and the hydraulic jump occurring when breaking waves encounter a down-rush by the preceding wave.