• 제목/요약/키워드: Internal Gear

검색결과 112건 처리시간 0.019초

내접치차의 강도에 관한 연구 (A study on strength of internal gear)

  • 정태형
    • 오토저널
    • /
    • 제6권3호
    • /
    • pp.45-54
    • /
    • 1984
  • Bending strength of an internal gear tooth is discussed as tooth form factor taking into account the actual stress magnitude. Stress analysis was carried out by the finite element method(FEM) for the calculation of tooth form factor of an internal gear. This paper also investigated the influences of number of teeth and addendum modification coefficient of the internal gear and the influences of number of teeth, addendum modification coefficient, pressure angle, radius of rounding of tooth tip, and bottom clearance coefficient of the pinion-shaped cutter on tooth form factor of internal gear. Generalizing the resultant data, a simple formula for the tooth form factor of an internal gear was derived for the calculation of tooth bending strength of an internal gear.

  • PDF

내치차 절삭시의 치형오차에 관한 연구 (A Study on Tooth Profile Error in Internal Gear Shaping)

  • 박천경;최영석
    • 대한기계학회논문집
    • /
    • 제15권1호
    • /
    • pp.154-162
    • /
    • 1991
  • 본 연구에서는 내치차의 절삭가공에서 발생하는 치형오차를 대상으로 이에 영 향을 미치는 제반 조건 중, 커터의 이론적인 인벌류트 치형으로부터의 편차, 커터와 내치차의 잇수에 의한 간섭, 창성과정(generating process)중 원주방향 이송과 같은 가공조건이 기어의 치형오차에 미치는 영향을 분석하고 이를 최소로 하는 조건을 유도 하여 양질의 내치차 생산에 기여 하고자 한다.

잇수차가 적은 내접치차의 다목적 최적 설계 (Multi-objective Optimal Desing of Internal Gear with Small Tooth Difference)

  • 최영석;김성근
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.808-812
    • /
    • 1996
  • Reduction gear with internal gear pair need functions such as compact size, high reduction ratios, high transmission efficiency, and low noise. Feasible design region of the internal gear pair with a small tooth difference is extremely limited because the internal gear pair is subject to interference in meshing and cutting. Single-objective optimal design can not simulataneously satisfy the manifold requirements of the internal gear pair and can not determine the economical specification of a pinion cutter. Multi-objective optimal design which include the specification of the pinion cutter in design variables is developed, considering the manufacturing error of an internalgear pair and the re-sharpening of the pinion cutter.

  • PDF

Development of a New Tooth Profile Designed for High Efficiency P/M Internal Gear Pump Rotors

  • Inui, Naoki;Ogata, Daisuke;Sasaki, Harumistu
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.940-941
    • /
    • 2006
  • We developed a new tooth profile designed for P/M internal gear pump rotors. The theoretical discharge volume of the new tooth profile internal gear rotors is more than 10% higher than that of the same size conventional rotors. Our new profile rotors can achieve a decrease in torque, and fuel-efficiency will also be improved.

  • PDF

내접치차의 굽힘강도에 관한 연구-피지점 부근의 응력상태 파악을 포함하여- (A Study on the Bending Strength of Internal Gear-With investigation of Stress State around Pitch Point-)

  • 정태형;변준형;이청신
    • 대한기계학회논문집
    • /
    • 제18권5호
    • /
    • pp.1126-1133
    • /
    • 1994
  • When designing an internal gear. the bending strength around pitch point as well as that at tooth root fillet should be considered because the bending stress around pitch point may occur as high as that at tooth root fillet. In this study, including stress state around pitch point, the bending strength (tensile side and compressive side) of internal gear tooth is investigated by the use of the finite element method(FEM) with regarding many influencing factors of cutter and gear geometries. Then, the critical sections around pitch point and at tooth root fillet are determined, and the simple formulae based on nominal stresses(bending, compressive, and shear) are derived for the calculations of actual stresses as the functions of tooth thicknesses and radii of curvatures of involute and fillet curve at those critical sections. The stresses calculated by the formulae agree well with those by the FEM. And the bending stresses around pitch point and at tooth root are easily estimated by the use of those formulae, therefore, those formulae are useful for the purpose of the design or the bending strength estimation of internal gear.

계수기용 비인벌류트 치형의 내치차 설계와 물림해석 (Design and Meshing Analysis of a Non-involute Internal Gear for Counters)

  • 이성철
    • Tribology and Lubricants
    • /
    • 제30권4호
    • /
    • pp.212-217
    • /
    • 2014
  • A counter gear transmits the rotation angle, so the angular velocity ratio of the gear does not necessarily need to be constant in the meshing process. As a pinion has a small number of teeth when combined with an internal gear for counters, tooth interference can occur with the use of an involute curve. This paper introduces circular arcs that represent a tooth profile and fillet for the profile design of a pinion through the combination of arcs with lines. The straight line of a rack tooth represents the profile of a mating internal gear. Thus, the circular arc and line maintain contact during the rotation of the counter gear. This paper presents an analysis of the meshing of the circular arc tooth and rack tooth along with the properties of the counter gear, such as the change in rotational velocity and amount of backlash. The contact ratio of the counter gear is 1 because the tooth contact occurs between circular arcs and line. The initial position of tooth contact, which denotes the simultaneous contact of two teeth, is found. As the rotation of the pinion, only one tooth keeps the contact situation. This meshing property is analyzed by the geometrical constraints of the tooth profile in contact and the results are presented as graphical diagrams in which tooth-arc movements are superimposed.

내접 기어를 이용한 프리텐셔너의 구동 메커니즘 개발 (Development of Operating Mechanism of a Pretensioner using Internal Gear Pairs)

  • 정성필;박태원;김욱현;홍요선
    • 한국정밀공학회지
    • /
    • 제27권3호
    • /
    • pp.89-94
    • /
    • 2010
  • The pretensioner is used to retract the belt webbing and tighten up any slack in the event of a crash. The retracting force of the pretensioner helps move the passenger into the optimum crash position in his or her seat. In this paper, the new concept of an operating mechanism of the pretensioning system is presented. The internal gear design program is developed using MATLAB. Two kinds of numerical analysis model are created. The first one, the rigid body dynamic model, is used to estimate the performance of several gear pairs. The initial performance of the new operating mechanism is analyzed and the best combination of the gear pairs is selected. The second one, the structural dynamic model, is used to calculate the deformation of the gear teeth. To decrease the deformation and interference of the teeth, the shape of the gear pairs is changed.

내측기어 성형용 사출성형 금형구조의 개발 (Development of the injection mold structure for internal gears)

  • 권윤숙;정영득
    • 동력기계공학회지
    • /
    • 제12권6호
    • /
    • pp.78-82
    • /
    • 2008
  • Plastic gears are more and more widely used in many industrial machine elements. Plastic gear has higher properties such as light weight, wear resistance, and vibration absorbing ability than metallic gears. But, in case of using an inaccurate plastic gear, its tooth breakage happen and fatigue life is shortened due to increase of applying load and temperature rising on the tooth flank. Inaccuracy of plastic gears such as pitch circle roundness and tooth profile generates vibration and noise. In this study, an internal plastic gears which is molded by a new injection mold structure are developed. The new mold structure is called the HR3P(hot runner type 3plate mold) that has an improved runner system in order to have good filling balance. As a result from this study, an internal gear with very accurate roundness was developed by using design of experiment.

  • PDF

내접치차 가공용 구형 호브의 설계에 관한 연구 (A study on design of spherical hob for internal gear hobbing)

  • 박천경;박동삼
    • 대한기계학회논문집
    • /
    • 제12권6호
    • /
    • pp.1312-1319
    • /
    • 1988
  • 본 연구에서는 임의의 내접치차를 가공하기 위한 구형호브를 설계하는데 그 목적이 있으며 GTP를 구하는 방법으로는 CAD의 envelope 이론을 도입하여 근사해법이 아닌 해석적 방법으로 GTP를 구하였으며 이는 여러 오차 해석에서도 유용하게 이용되 었다.또한 호브의 설계를 위한 전산 프로그램을 개발하여 가공하고자 하는 내접치 차의 데이터로 부터 압력각, 이두께 및 피치의 값을 수정하여 호브를 설계함과 동시에 여유면 가공량을 등을 바로 계산할 수 있도록 하였으며 이에 의한 구형 호브의 설계에 를 제시하였다.

냉간 압출된 유성기어의 내부결함 방지 (Prevention of Internal Defects of Cold Extruded Planetary Gears)

  • 이정환;최종웅;이영선;최상호
    • 한국정밀공학회지
    • /
    • 제16권12호
    • /
    • pp.168-173
    • /
    • 1999
  • It is investigated that internal defect of planetary gear which consists of two gears with different number of teeth on both side. The internal defect, central burst, begin to form at the place of adiabatic shear band which usually has maximum ductile fracture value during the forming operation, forward and backward extrusion. It makes the plastic forming of planetary gear difficult. The prediction of defect to minimize the cost to produce the planetary gear. The finite element simulation code DEFORM is applied to analyze the defects. In the analysis, the toothed gears are assumed as axisymmetric cylinders whose diameters are equal to those of pitch circles of the each gears. Experiments were carried out with the SCM415 alloy steel as billet material and AIDA 630-ton knuckle-joint press. The calculated results and experimental inspections are compared to design a die and blank without defects and the results are useful to predict the internal defect.

  • PDF