• Title/Summary/Keyword: Intermolecular Potential

Search Result 54, Processing Time 0.023 seconds

Correlation between an Intermolecular Potential and the State of a Nanoscale System (분자간 포텐셜과 나노계 상태와의 상관관계)

  • Choi, Soon-Ho;Chung, Han-Shik;Jeong, Hyo-Min;Lim, Min-Jong;Choi, Gyung-Min;Kim, Duck-Jool
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.496-501
    • /
    • 2007
  • Recently, as MEMS and NEMS devices have been widely used in the various engineering applications, the characteristics of nanoscale systems are investigated in the limelight. However, as opposed to a macroscale system, the identification of the state of nanoscale systems is extremely hard because they can include only the order of $10^{3}\sim10^{5}$ molecules, which requires highly expensive and accurate experimental apparatus for an investigation. This limitations make the study on nanoscale system use computer simulations. Therefore, it is strongly required to identify the state of nanoscale system simulated in computer simulation. In these molecular dynamics(MD) study, we suggest that the potential energy of individual molecule can be used as criterion for defining the state of clusters or nanoscale systems. In addition, we compared the phase state from the potential energy with one from the radial distribution function(RDF) for verification. The comparison showed that the intermolecular potential energy can be used as a criteria distinguishing the phase state of nanoscale systems (This study will be published soon in the KSME transaction of the section B).

  • PDF

The Atomic-Scale Investigation of Friction at Hydrocarbon Interfaces via Molecular Dynamics Simulations ASIATRIB 2002

  • Harrison, J.A.;Gao, G;Chateauneuf, G.M.;Mikulski, P.T.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.59-60
    • /
    • 2002
  • In this digest, we briefly review our current molecular dynamics (MD) simulations that utilize both the reactive empirical bond order potential (REBO) and the adaptive intermolecular REBO (AIREBO) potential energy functions. The AIREBO potential includes intermolecular interactions, so that self·assembled monolayers, and liquids, can be modeled. We have examined the mechanical and tribological properties of model self assembled monolayers and amorphous carbon films. Self-assembled monolayers are modeled by covalently bonding hydrocarbon chains to diamond substrates. Because the REBO potentials can model chemical reactions, specific compression and sliding induced chemical reactions were identified.

  • PDF

The Intermolecular Potential of Ar-Ar by Regularized Inverse Method (규칙화 역과정 방법을 이용한 Ar-Ar의 분자간 위치에너지 결정)

  • Kim, Hwa Joong;Kim, Young Sik
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.1
    • /
    • pp.20-27
    • /
    • 1996
  • A stable and accurate inverse method for extracting potential from spectroscopic data studied. The method is based on the Tikhonov regularization method to overcome the possible instability of nonlinear inverse problems using a priori smooth properties of the potential energy surface. The merit of this method is to treat the potential as continuous functions of the intermolecular coordinates instead of the conventional parameter fitting of restricted potential forms. Numerical study for the Ar-Ar show that from spectroscopic data the exact potential has been recovered whole region and the discrepancies by the dispersion force observed at the large distance between the exact and Morse potential or from RKR method can be eliminated by this method.

  • PDF

A Theoretical Study of the Formation of Benzene Excimer: Effects of Geometry Relaxation and Spin-state Dependence

  • Kim, Dongwook
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2738-2742
    • /
    • 2014
  • Geometry relaxation effects on the formation of benzene excimer were investigated by means of ab initio calculation at SOS-CIS($D_0$)/aug-cc-pVDZ level. In the case of T-shaped dimer configuration, intermolecular interactions in the excited states are found to be nearly the same as those in the ground state and structural deformations are limited within a single molecule; the geometry relaxation effects are then negligible and singlet-triplet energy gap remains constant. As for face-to-face eclipsed dimer, on the other hand, both molecules undergo structural change. As a result, intermolecular interactions in the excited states are significantly different than those in the ground state. Although the intermolecular distances obtained from potential energy curve calculation with frozen molecular structures are in qualitative agreement, the excited-state binding energies are notably overestimated with respect to those at optimized structures. In particular, the effects are calculated to be larger in $T_1$ state and hence singlet-triplet energy gap, which reduces markedly in this configuration, is underestimated without relaxation.

Theoretical study of the Reactions of $H+H_2$ and Its Isotopic Variants Inter- and Intramolecular Isotope effect

  • 성주범
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.6
    • /
    • pp.634-641
    • /
    • 1998
  • Quasiclassical trajectory calculations were carried out for the reactions of $H+H_2$ (V=O, J=O) and its isotope variants on the Siegbahn-Liu-Truhlar-Horowitz potential energy surface for the relative energies E between 6 and 150 kcal/mol. The goal of the work was to understand the inter- and intramolecular isotope effects. We examine the relative motion of reactants during the collision using the method of analysis that monitors the intermolecular properties (internuclear distances, geometry of reactants, and final product). As in other works, we find that the heavier the incoming atom is, the greater the reaction cross section is at the same collision energy. Using the method of analysis we prove that the intermolecular isotope effect is contributed mainly by differences in reorientation due to the different reduced masses. We show that above E=30 kcal/mol recrossing also contributes to the intermolecular isotope effect. For the intramolecular isotope effect in the reactions of H+HD and T+HD, we reach the same conclusions as in the systems of $O(^3P)+HD$, F+HD, and Cl+HD. That is, the intramolecular isotope effect below E=150 kcal/mol is contributed by reorientation, recrossing, and knockout type reactions.

A Study on the Phase Criteria of Nanoscale Systems (나노스케일 계의 상태기준에 관한 연구)

  • Lim, Min-Jong;Choi, Gyung-Min;Kim, Duck-Jool;Chung, Han-Shik;Jeong, Hyo-Min;Choi, Soon-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.5
    • /
    • pp.435-447
    • /
    • 2007
  • Recently, as MEMS and NEMS devices have been widely used in the various engineering applications, the characteristics of nanoscale systems are investigated in the limelight. However, as opposed to a macroscale system, the identification of the state of nanoscale systems is extremely hard because they can include only the order of $10^3{\sim}10^5$ molecules, which requires highly expensive and accurate experimental apparatus for an investigation. This limitations make the study on nanoscale system use computer simulations. Therefore, it is strongly required to identify the state of nanoscale system simulated in computer simulation. In this molecular dynamics(MD) study, we suggest that the potential energy of individual molecule can be used as criterion for defining the state of clusters or nanoscale systems. In addition, we compared the phase state from the potential energy with one from the radial distribution function(RDF) for verification. The comparison showed that the intermolecular potential energy can be used as a criteria distinguishing the phase state of nanoscale systems.

Molecular Dynamics Study on Collision Behaviors of Cluster of Mercury on Thin-Film of Copper (구리박막에서 수은 클러스터의 충돌거동에 대한 분자동역학적 연구)

  • Jeong, Heung-Cheol;Go, Sun-Mi;Choi, Gyung-Min;Kim, Duck-Jool
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2678-2683
    • /
    • 2007
  • The interaction between metal molecules and liquid metal molecules was modeled in the molecular scale and simulated by the molecular dynamics method in order to understand behaviors of the cluster on metallic surface in collision process. Lennard-Jones potential had been used as intermolecular potential, and only attraction 때 d repulsion had been used for the behavior of the cluster on the metal surface. As results, the behavior of the cluster was so much influenced by the cluster of liquid metal temperature and function of molecules forces, such as attraction and repulsion, in the collision progress. These results of simulation will be the foundation for the micro fabrication manufacturing by using spray application technology.

  • PDF

Numerical Simulation for Generation of Homogeneous Thin-Film in Spray Deposition (분무증착에서 균일 박막형성을 위한 전산모사)

  • Jeong, Heung-Cheol;Go, Sun-Mi;Choi, Gyung-Min;Kim, Duck-Jool
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2702-2707
    • /
    • 2007
  • The purpose of this study is to calculate the behavior of molecules for the generation of homogeneous thin-films in the process of spray deposition. The calculation system was composed of a suface molecular region and droplet molecular region. The thin-film was generated when droplet molecules fell to surface molecules. Lennard-Jones potential had been used as intermolecular potential, and only attraction 때 d repulsion had been used for the behavior of the droplet on the solid surface. As results, the behavior of the droplet was so much influenced by the surface temperature in the spray deposition process. High temperature of surface has higher porosity and larger spread area. It was found that simulation results generally agreed well with previous the experimental results. This simulation result will be the foundation for the deposition processes of industry.

  • PDF

Lattice Vibrational Calculation of Orthorhombic Hydrogne Chloride

  • No Kyoung Tai;Jaon Mu Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.4
    • /
    • pp.183-186
    • /
    • 1985
  • The lattice vibrational calculation of orthorhombic hydrogen chloride is performed using physically realistic potential function which can reproduce the X-ray structure and heat of sublimation of the low temperature phase. The polar coordinates representation is introduced in order to describe the intermolecular interactions in a molecular crystal. The splitting in internal modes is calculated as 49 $cm^{-1}$ and the other modes are in good agreement with experimental results.

Theoretical Calculation of Activity Coefficients of Liquid Mixtures (액체혼합물의 활동도계수의 이론적 계산)

  • Moon Dae-Won;Jhon Mu Shik;Lee Taikyue
    • Journal of the Korean Chemical Society
    • /
    • v.21 no.6
    • /
    • pp.395-403
    • /
    • 1977
  • Significant structure theory was applied to some liquid mixture systems ranging from simple monatomic molecule systems to polyatomic molecule systems, and the activity coefficients ${\gamma}$ of the liquid mixture systems were calculated over whole mole fractions using the following thermodynamic relation $RTln_{{\gamma}i} = (\frac{{\partial A}^E}{{\partial N}_i})_{T,V,N_i} $ where $A^E$ represents the excess Helmholtz free energy, and $N_i$ is the number of molecules of component i. The activity coefficients of the solutions such as monatomic molecule systems (Ar-Kr, Kr-Xe) and diatomic molecule systems $(Ar-O_2,\;N_2-CO)$ and $CH_4-Kr$ systems whose components have similar shapes for intermolecular potential curves were calculated successfully only with the ${\delta}E_s$, correction parameter for energy $E_s$, for mixture systems. For other systems such as $Ar-N_2,\;O_2-N_2\;and\;CH_4-C_3H_8$ whose components have dissimilar intermolecular potential curve shapes an additional correction parameters ${\delta}$V and even one more parameter ${\delta}$n were necessary [see Eqs.(10)∼(12)].

  • PDF