• 제목/요약/키워드: Interleukin 6

검색결과 1,851건 처리시간 0.037초

LPS로 유도한 대식세포에서 MAP kinase의 억제에 의한 구보음(九寶飮)의 NO, TNF-$\alpha$, IL-6, IL-12 생성 억제 효과 (Effects of GuBoEum Inhibiting NO, TNF-$\alpha$, IL-6 and IL-12 Production by Blocking MAP Kinase Activation in LPS-induced Murine Macrophages)

  • 이병순;신조영;이시형
    • 동의생리병리학회지
    • /
    • 제23권1호
    • /
    • pp.104-112
    • /
    • 2009
  • The purpose of this study was to investigate the anti-inflammatory effects of extract from GuBoEum(GBE) on the peritoneal macrophage. To evaluate anti-inflammatory effects of GBE. I measured cytokines (interleukin-6; IL-6, interleukin-12; IL-12, tumor necrosis factor-$\alpha$; TNF-$\alpha$) and nitric oxide (NO) production in lipopolysacchride (LPS)-induced macrophages. Furthermore, I examined molecular mechanism using western blot and also LPS-induced endotoxin shock. Extract from GBE does not have any cytotoxic effect in the peritoneal macrophages. Extract from GBE reduced LPS-induced IL-6, TNF-$\alpha$, IL-12 and NO production in peritoneal macrophages. GBE inhibited the activation of extracelluar signal-regulated kinase (ERK), C-Jun $NH_2$-terminal kinase (JNK) but not of p38, degradation of $I{\kappa}B-{\alpha}$ in the LPS-stimulated peritoneal macrophages. GBE inhibited the production of TNF-$\alpha$, IL-6 and IL-12 in serum after LPS injection. These results suggest that GBE may inhibit the production of TNF-$\alpha$, IL-6, and IL-12 through inhibition of ERK and JNK activation, and that GBE may be beneficial oriental medicine for inflammatory diseases.

Increased Methylation of Interleukin 6 Gene Is Associated with Obesity in Korean Women

  • Na, Yeon Kyung;Hong, Hae Sook;Lee, Won Kee;Kim, Young Hun;Kim, Dong Sun
    • Molecules and Cells
    • /
    • 제38권5호
    • /
    • pp.452-456
    • /
    • 2015
  • Obesity is the fifth leading risk for death globally, and a significant challenge to global health. It is a common, complex, non-malignant disease and develops due to interactions between the genes and the environment. DNA methylation can act as a downstream effector of environmental signals; analysis of this process therefore holds substantial promise for identifying mechanisms through which genetic and environmental factors jointly contribute to disease risk. To assess the effects of excessive weight and obesity on gene-specific methylation levels of promoter regions, we determined the methylation status of four genes involved in inflammation and oxidative stress [interleukin 6 (IL6), tumor necrosis factor ${\alpha}$ ($TNF{\alpha}$), mitochondrial transcription factor A (TFAM), and glucose transport 4 (GLUT4)] in blood cell-derived DNA from healthy women volunteers with a range of body mass indices (BMIs) by methylation-specific PCR. Interestingly, the samples from obese individuals ($BMI{\geq}30kg/m^2$) showed significantly increased hypermethylation for IL6 gene compared to normal weight ($BMI<23kg/m^2$) and overweight sample ($23kg/m^2{\leq}BMI<30kg/m^2$) (P = 0.034 and P = 0.026). However there was no statistically significant difference in promoter methylation of the other 3 genes between each group. These findings suggest that aberrant DNA methylation of IL6 gene promoter may play an important role in the etiology and pathogenesis of obesity and IL6 methylation could be used as molecular biomarker for obesity risk assessment. Further studies are required to elucidate the potential mechanisms underlying this relationship.

Effects of Keratinase on Performance, Nutrient Utilization, Intestinal Morphology, Intestinal Ecology and Inflammatory Response of Weaned Piglets Fed Diets with Different Levels of Crude Protein

  • Wang, D.;Piao, X.S.;Zeng, Z.K.;Lu, T.;Zhang, Q.;Li, P.F.;Xue, L.F.;Kim, S.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권12호
    • /
    • pp.1718-1728
    • /
    • 2011
  • Two experiments were conducted to investigate the in vitro ability of keratinase to hydrolyze soybean glycinin and ${\beta}$-conglycinin and to evaluate the in vivo effects of keratinase when included in corn-soybean diets with different levels of crude protein and fed to nursery pigs. In experiment 1, a saturated keratinase solution (1 ml) was added to two blank controls of either glycinin or ${\beta}$-conglycinin resulting in the hydrolysis of 94.74% glycinin and 88.89% ${\beta}$-conglycinin. In experiment 2, 190 pigs (8.3${\pm}$0.63 kg BW) were allotted to one of four treatments in a 2${\times}$2 factorial arrangement on the basis of body weight, and sex was balanced among the pens. The effects of crude protein (19 vs. 22%) and keratinase (0 vs. 0.05%) were studied. Each treatment was applied to six pens with seven (two pens) or eight pigs per pen. Pigs were fed the experimental diets for 21 d. Weight gain and feed conversion ratio were improved (p<0.05) with keratinase supplementation while feed intake was reduced (p<0.05). Keratinase supplementation increased (p<0.05) the apparent total tract digestibility of dry matter, energy, crude protein and phosphorus. Keratinase supplementation also increased n-butyric acid in the cecum and colon, lactobacilli and total anaerobe counts in the colon as well as the ratio of villus height to crypt depth in the ileum. Additionally, fecal score, ammonia nitrogen and branch chain volatile fatty acids in the colon, E. coli and total aerobe counts in the colon, crypt depth in the jejunum and ileum as well as serum interleukin-1 and interleukin-6 concentrations were also decreased (p<0.05) by keratinase supplementation. A reduction in dietary crude protein decreased (p<0.05) colon ammonia nitrogen concentration and cecal propionic acid and branch chain volatile fatty acid concentrations. In addition, cecal E. coli counts, colon total anaerobe counts, ileal crypt depth, and serum interleukin-1 and interleukin-6 concentrations were also decreased (p<0.05) with the reduction of dietary crude protein. With the exception of fecal scores, there were no significant interactions between crude protein and keratinase. This study provides evidence that dietary keratinase supplementation improved nursery pig performance by improving intestinal morphology and ecology, thus improving nutrient digestibility and alleviating the inflammatory response.

NMAAP1 Expressed in BCG-Activated Macrophage Promotes M1 Macrophage Polarization

  • Liu, Qihui;Tian, Yuan;Zhao, Xiangfeng;Jing, Haifeng;Xie, Qi;Li, Peng;Li, Dong;Yan, Dongmei;Zhu, Xun
    • Molecules and Cells
    • /
    • 제38권10호
    • /
    • pp.886-894
    • /
    • 2015
  • Macrophages are divided into two subpopulations: classically activated macrophages (M1) and alternatively activated macrophages (M2). BCG (Bacilli Calmette-$Gu{\acute{e}}rin$) activates disabled $na{\ddot{i}}ve$ macrophages to M1 macrophages, which act as inflammatory, microbicidal and tumoricidal cells through cell-cell contact and/or the release of soluble factors. Various transcription factors and signaling pathways are involved in the regulation of macrophage activation and polarization. We discovered that BCG-activated macrophages (BAM) expressed a new molecule, and we named it Novel Macrophage Activated Associated Protein 1 (NMAAP1). 1 The current study found that the overexpression of NMAAP1 in macrophages results in M1 polarization with increased expression levels of M1 genes, such as inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-${\alpha}$), Interleukin 6 (IL-6), Interleukin 12 (IL-12), Monocyte chemoattractant protein-1 (MCP-1) and Interleukin-1 beta (IL-$1{\beta}$), and decreased expression of some M2 genes, such as Kruppel-like factor 4 (KLF4) and suppressor of cytokine signaling 1 (SOCS1), but not other M2 genes, including arginase-1 (Arg-1), Interleukin (IL-10), transforming growth factor beta (TGF-${\beta}$) and found in inflammatory zone 1 (Fizz1). Moreover, NMAAP1 overexpression in the RAW264.7 cell line increased cytotoxicity against MCA207 tumor cells, which depends on increased inflammatory cytokines rather than cell-cell contact. NMAAP1 also substantially enhanced the phagocytic ability of macrophages, which implies that NMAAP1 promoted macrophage adhesive and clearance activities. Our results indicate that NMAAP1 is an essential molecule that modulates macrophages phenotype and plays an important role in macrophage tumoricidal functions.

고란초 생물 전환 추출물의 항염증 효과 (Anti-inflammatory effect of Crypsinus hastatus biorenovation extract)

  • 이경미;최병민;박태진;홍혜현;김승영
    • Journal of Applied Biological Chemistry
    • /
    • 제65권1호
    • /
    • pp.49-55
    • /
    • 2022
  • Biorenovation은 미생물의 효소적 기능을 이용하여 천연 추출물과 같은 소재를 생물전환하는 기법으로 생리활성이 증진되거나 세포독성을 감소시키는 효능이 보고되었다. 이에 본 연구는 천연소재의 생리활성을 증진하고 가치를 향상시키고자 biorenovation 기법을 적용하여 고란초 전엽체 추출물(CH)을 생물전환하였고, LPS로 자극된 RAW 264.7 세포를 사용하여 항 염증 활성을 평가하였다. 세포 사멸을 보이지 않는 50-200 ㎍/mL 농도에서 CH와 생물 전환 추출물(CHB)의 Inducible nitric oxide synthase(iNOS), cyclooxygenase-2 (COX-2)의 발현량 및 전 염증성 사이토카인의 생성량을 조사한 결과, CHB는 CH보다 산화질소, prostaglandin E2 및 사이토카인(interleukin-6, interleukin-1β, tumor necrosis factor-α)의 생성을 억제하였으며, 특히 CHB는 200 ㎍/mL 농도에서 LPS 자극에 의한 iNOS 및 COX-2 단백질의 발현을 무 처리군과 유사한 수준으로 억제하였다. 이러한 결과는 biorenovation 생물 전환을 통해서 기존 식물 추출물의 항염증 활성이 증진될 가능성을 나타내며, CHB가 효과적인 항염증 소재로서 화장품 및 건강기능식품에 적용될 가능성을 시사한다.

Biorenovation 기법 적용 제주상사화 callus의 항염증 활성 (Anti-inflammatory effects of Lycoris chejuensis callus using biorenovation)

  • 홍혜현;박태진;이유정;김정환;김승영
    • Journal of Applied Biological Chemistry
    • /
    • 제66권
    • /
    • pp.197-203
    • /
    • 2023
  • 제주상사화(Lycoris chejuensis)는 우리나라에 자생하는 특산식물로 관상용으로의 가치가 높을 뿐만 아니라 다양한 약리성분을 함유하고 있어 약용적으로도 가치가 높은 식물이다. 그러나 종자번식이 이루어지지 않고 구근을 통해 번식이 이루어지며 소수의 개체가 자생하므로 산업적으로 활용하기에 어려움이 따른다. 따라서 본 연구는 식물의 종 특성을 벗어나 환경에 관계없이 대량화 할 수 있는 제주상사화 callus (LC)를 사용하였으며 미생물의 효소 작용을 이용하여 분자의 구조 수정을 유도하는 친환경 생물전환 기법인 biorenovation을 적용하여 활성을 증진시키고자 하였다. 이에 본 연구에서는 biorenovation 된 제주상사화 callus 추출물(LCB)의 항염증 활성을 마우스 대식세포인 RAW 264.7 세포에서 평가하였으며 앞서 LC 및 LCB가 세포의 생존에 미치는 영향을 조사한 결과 25, 50, 100 ㎍/mL 농도에서 LCB는 LC의 높은 세포독성을 감소하였음을 확인하였다. 또한 LCB는 세포 독성이 나타나지 않는 농도에서 nitric oxide 및 prostaglandin E2를 효과적으로 억제하였으며 이들의 합성 효소인 inducible NO synthase, cyclooxygenase-2의 발현을 유의하게 억제함으로써 NO 및 PG E2를 효과적으로 하향 조절함을 입증하였다. 뿐만 아니라 pro-inflammatory cytokines인 tumor necrosis factor-α와 interleukin-1β, interleukin-6의 발현 또한 유의하게 억제하는 것으로 확인되었다. 이러한 결과를 통해 LCB가 다양한 염증 인자를 표적으로 하는 항염증 소재로 적용될 수 있음을 제안한다.

Raw264.7 세포에서 황기와 산초 1:1 혼합물의 면역 증진 효과 (Immune stimulating effects of Astragalus membranaceus and Zanthoxylum schinifolium 1:1 mixture in Raw264.7 cells)

  • 조일제;유영은;이상민;김은옥;박준흠;구세광
    • Journal of Applied Biological Chemistry
    • /
    • 제66권
    • /
    • pp.519-526
    • /
    • 2023
  • 본 연구는 마우스 대식세포 유래 Raw264.7 세포주에서 황기와 산초 1:1 혼합물(AZM-1:1)의 면역 증진 효능을 탐색하였다. Raw264.7 세포에 100-400 ㎍/mL의 A ZM-1:1 처치는 세포 생존율의 변화 없이 inducible nitric oxide synthase mRNA의 발현 증가와 함께 nitric oxide의 생성을 통계적으로 유의하게 증가시켰다. 더불어 A ZM-1:1은 처치 농도 의존적으로 cyclooxygenase-2 mRNA의 유도와 함께 세포 배양액 중 prostaglandin E2의 함량을 증가시켰다. 또한, AZM-1:1은 tumor necrosis factor-α, interleukin-1β, interleukin-6 및 monocyte chemoattractant protein-1의 전사를 촉진하였다. Immunoblot 분석을 통하여 AZM-1:1은 mitogen-activated protein kinase의 인산화를 증가시키고, inhibitory-κBα의 인산화를 매개한 분해를 촉진하며, p65의 인산화를 증가시킬 수 있음을 확인하였다. AZM-1:1의 처치는 녹색 형광으로 표지된 대장균 파편의 탐식작용을 촉진하였다. 따라서, 이상의 결과는 A ZM-1:1가 대식세포를 포함한 내재면역을 증진시키는 기능성 식의약 소재가 될 수 있음을 나타낸다.

The Modulating Effect of β-1, 3/1, 6-glucan Supplementation in the Diet on Performance and Immunological Responses of Broiler Chickens

  • Zhang, Bo;Guo, Yuming;Wang, Zhong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권2호
    • /
    • pp.237-244
    • /
    • 2008
  • The object of this trial was to investigate the effect of dietary ${\beta}$-1,3/1,6-glucan supplementation on the performance and immunological response of broiler chickens. Two hundred and forty 1-day old male broilers ($39{\pm}1g$) were separated into six treatments which were given six different feeds containing 0 (control), 25, 50, 75, 100 and 125 mg/kg dietary ${\beta}$-1,3/1,6-glucan supplementation. On days 21 and 42, body weight gain, feed consumption and feed conversation rate were recorded as measures of growth performance. The levels of key cytokines in the immuno-regulating pathway: interleukin-1 (IL-1), interleukin-2 (IL-2), interferon $\gamma$(IFN-$\gamma$, tumor necrosis factor $\alpha$(TNF-$\alpha$, and the concentrations of signal molecules: peripheral blood plasma globulin, serum Immunoglobulin G (IgG) and intestinal secretary Immunoglobulin A (sIgA), were measured as indices of the immune response to determine suitable levels of dietary ${\beta}$-1,3/1,6-glucan supplementation. The results indicated that performance was elevated quadratically with dietary ${\beta}$-1,3/1,6-glucan supplementation. Maximal growth performance and an enhanced immunological response were obtained at a supplemented level of 50 mg/kg.

Bevacizumab Regulates Cancer Cell Migration by Activation of STAT3

  • Wu, Huan-Huan;Zhang, Shuai;Bian, Huan;Li, Xiao-Xu;Wang, Lin;Pu, Yin-Fei;Wang, Yi-Xiang;Guo, Chuan-Bin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권15호
    • /
    • pp.6501-6506
    • /
    • 2015
  • There are numerous clinical cases indicating that long-term use of bevacizumab may increase the invasiveness of tumors. However, to date, little is known about underlying molecular mechanisms. Therefore, the purpose of our study was to investigate effects of bevacizumab in four cancer cells lines (WSU-HN6, CAL27, Tca83, and HeLa). It was found to promote migration and invasion in the WSU-HN6 and Tca83 cases, while exerting inhibitory effects in CAL27 and HeLa cells. The signal transducer and activator of transcription (STAT) 3 inhibitors niclosamide and S3I-201 inhibited the STAT3 signal pathway, which is activated by bevacizumab. These inhibitors also substantially blocked bevacizumab-induced migration of WSU-HN6 and Tca83 cells. Bevacizumab upregulated interleukin (IL)-6 and phosphorylated (p)-STAT3 expression time-dependently. Therefore, we propose that bevacizumab has differential effects on the migration of different cancer cell lines and promotes migration via the IL-6/STAT3 signaling pathway.

RAW 264.7 Cell에서 세이지에 의한 염증성 Cytokine 및 iNOS억제 효과 (Inhibitory Effect of Salvia officinalis on the Inflammatory Cytokines and Inducible Nitric Oxide Synthasis in Murine Macrophage RAW264.7)

  • 현은아;이혜자;윤원종;박수영;강희경;김세재;유은숙
    • 약학회지
    • /
    • 제48권2호
    • /
    • pp.159-164
    • /
    • 2004
  • Primary pro-inflammatory cytokines are a trio: tumor necrosis- $\alpha$ (TNF-$\alpha$), interleukine-$\beta$ (IL-$\beta$), and interleukine-6 (IL-6). These cytokines initiate and regulate the acute-phase inflammatory response during infection, trauma, or stress and appear to play an important role in the immune process. Nitric oxide (NO) is a multi-functional mediator, which plays an important role in regulating various biological functions in vivo. NO production by inducible nitric oxide synthase (iNOS) in macrophages is essential for the defense mechanisms against microorganisms and tumor cells. However, over-expression of iNOS by various stimuli, resulting in over-production of NO, contributes to the pathogenesis of septic shock and some inflammatory and auto-immune disease. Solvent fractions of sage ( Salvia officinalis L.), which is cultivated in Jeju-Do, was assayed for their effects on TNF-$\alpha$ and IL-6 production in LPS-stimulated RAW 264.7 macrophages. Hexane and ethylacetate (EtOAc) fraction of sage inhibited the protein and mRNA expression of TNF-$\alpha$ and IL-6 in LPS stimulated RAW 264.7 cells at the concentration of 100 $\mu\textrm{g}$/$m\ell$. Also, incubation of RAW 264.7 cells with the fraction of hexane or EtOAc (50 $\mu\textrm{g}$/$m\ell$) inhibited the LPS induced nitrite accumulation and the LPS/IFN-${\gamma}$ induced iNOS protein. And this inhibition of iNOS protein is concordant with the inhibition of iNOS mRNA expression. Above results suggest that extract of sage may have anti-inflammatory activity through the inhibition of pro-inflammatory cytokines (TNF-$\alpha$, IL-1$\beta$, IL-6), iNOS and NO.