DOI QR코드

DOI QR Code

Anti-inflammatory effect of Crypsinus hastatus biorenovation extract

고란초 생물 전환 추출물의 항염증 효과

  • Lee, Kyung-Mi (Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University) ;
  • Choi, Byeong Min (Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University) ;
  • Park, Tae-Jin (Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University) ;
  • Hong, Hyehyun (Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University) ;
  • Kim, Seung-Young (Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University)
  • Received : 2021.12.30
  • Accepted : 2022.02.18
  • Published : 2022.03.31

Abstract

Biorenovation is a method for converting materials using the enzyme properties of microorganisms. Natural products converted by that method increase physiological activity or reduce cytotoxicity. In this study, we investigated the anti-inflammatory activity of crypsinus hastatus prothallium (CH) and biorenovated CH prothallium (CHB) using RAW 264.7 cells stimulated with lipopolysaccharide (LPS). CHB inhibited the production of nitric oxide, prostaglandin E2 and cytokines (interleukin-6, interleukin-1β, tumor necrosis factor-α) compared to CH at a concentration of 50-200 ㎍/mL. In addition, CHB concentration of 200 ㎍/mL inhibited the expression of inducible nitric oxide synthase and cyclooxygenase-2 protein by LPS stimulation to the level of the untreated control group. These results indicate that CHB could be a novel anti-inflammatory agent for cosmetic and pharmaceutical ingredients.It also suggests that the application of biorenovation has potential usefulness in developing anti-inflammatory materials. It also suggests that the application of bio-renovation has potential usefulness in the development of inflammatory material. We applied Biorenovation technology to Distylium racemosum extract (DR) to generate Distylium racemosum biorenovation product (DRB), and investigated the anti-inflammatory properties of DRB in lipopolysaccharide (LPS)-treated RAW264.7 macrophages. We are applying technology to Biorenovation Distylium racemosum extract (DR) Distylium racemosum was to create a biorenovation product (DRB), lipopolysaccharide (LPS) investigated the anti-inflammatory properties of DRB in RAW264.7 macrophages treated for.

Biorenovation은 미생물의 효소적 기능을 이용하여 천연 추출물과 같은 소재를 생물전환하는 기법으로 생리활성이 증진되거나 세포독성을 감소시키는 효능이 보고되었다. 이에 본 연구는 천연소재의 생리활성을 증진하고 가치를 향상시키고자 biorenovation 기법을 적용하여 고란초 전엽체 추출물(CH)을 생물전환하였고, LPS로 자극된 RAW 264.7 세포를 사용하여 항 염증 활성을 평가하였다. 세포 사멸을 보이지 않는 50-200 ㎍/mL 농도에서 CH와 생물 전환 추출물(CHB)의 Inducible nitric oxide synthase(iNOS), cyclooxygenase-2 (COX-2)의 발현량 및 전 염증성 사이토카인의 생성량을 조사한 결과, CHB는 CH보다 산화질소, prostaglandin E2 및 사이토카인(interleukin-6, interleukin-1β, tumor necrosis factor-α)의 생성을 억제하였으며, 특히 CHB는 200 ㎍/mL 농도에서 LPS 자극에 의한 iNOS 및 COX-2 단백질의 발현을 무 처리군과 유사한 수준으로 억제하였다. 이러한 결과는 biorenovation 생물 전환을 통해서 기존 식물 추출물의 항염증 활성이 증진될 가능성을 나타내며, CHB가 효과적인 항염증 소재로서 화장품 및 건강기능식품에 적용될 가능성을 시사한다.

Keywords

Acknowledgement

본 연구는 중소벤처기업부와 한국산업기술진흥원이 지원하는 지역특화산업육성+(R&D) 사업으로 수행된 연구결과입니다(S3090174).

References

  1. Oishi Y, Manabe I (2018) Macrophages in inflammation, repair and regeneration. Int Immunol 30(11): 511-528. doi: 10.1093/intimm/dxy054
  2. Sherwood ER, Toliver-Kinsky T (2004) Mechanisms of the inflammatory response. Best Pract Res Clin Anaesthesiol 18(3): 385-405. doi: 10.1016/j.bpa.2003.12.002
  3. Libby P (2007) Inflammation mechanisms: the molecular basis of inflammation and disease. Nutr Rev 65(12 Pt 2): S140-S146. doi: 10.1111/j.1753-4887.2007.tb00352.x
  4. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L (2017) Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9(6): 7204-7218. doi: 10.18632/oncotarget.23208
  5. Kim KH, Jeong MH, Shin JH, Joo SB, Kim W, Lee SU, Kim KH, Kim NH, Cho JH, Park JC, Na KJ, Ahn YK, Cho JG, Ahn BH, Park JC, Kang JC (2000) The Role of Chronic Infection and Inflammation in Korean Patients with Coronary Artery Disease. Korean Circulation J 30(9): 1107-1116. doi:10.4070/kcj.2000.30.9.1107
  6. Strowig T, Henao-Mejia J, Elinav E, Flavell R (2012) Inflammasomes in health and disease. Nature 481(7381): 278-286. doi: 10.1038/nature10759
  7. Choi HJ, Eun JS, Park YR, Kim DK, Li R, Moon WS, Park JM, Kim HS, Cho NP, Cho SD, Soh Y (2008) Ikarisoside A inhibits inducible nitric oxide synthase in lipopolysaccharide-stimulated RAW 264.7 cells via p38 kinase and nuclear factor-kappaB signaling pathways. Eur J Pharmacol 601(1-3): 171-178. doi: 10.1016/j.ejphar.2008.09.032
  8. Wei S, Yang D, Yang J, Zhang X, Zhang J, Fu J, Zhou G, Liu H, Lian Z, Han H (2019) Overexpression of Toll-like receptor 4 enhances LPS-induced inflammatory response and inhibits Salmonella Typhimurium growth in ovine macrophages. Eur J Cell Biol 98(1): 36-50. doi: 10.1016/j.ejcb.2018.11.004
  9. Tao MQ, Ji CL, Wu YJ, Dong JY, Li Y, Olatunji OJ, Zuo J (2020) 1,7-Dihydroxy-3,4-Dimethoxyxanthone Inhibits Lipopolysaccharide-Induced Inflammation in RAW264.7 Macrophages by Suppressing TLR4/NF-κB Signaling Cascades. Inflammation 43(5): 1821-1831. doi: 10.1007/s10753-020-01256-3
  10. Baeuerle PA, Henkel T (1994) Function and activation of NF-kappa B in the immune system. Annu Rev Immunol 12: 141-179. doi: 10.1146/annurev.iy.12.040194.001041
  11. Lee HA, Song BR, Kim HR, Kim JE, Yun WB, Park JJ, Lee ML, Choi JY, Lee HS, Hwang DY (2017) Butanol extracts of Asparagus cochinchinensis fermented with Weissella cibaria inhibit iNOS-mediated COX-2 induction pathway and inflammatory cytokines in LPS-stimulated RAW264.7 macrophage cells. Exp Ther Med 14(5): 4986-4994. doi: 10.3892/etm.2017.5200
  12. Kim JB, Han AR, Park EY, Kim JY, Cho W, Lee J, Seo EK, Lee KT (2007) Inhibition of LPS-induced iNOS, COX-2 and cytokines expression by poncirin through the NF-kappaB inactivation in RAW 264.7 macrophage cells. Biol Pharm Bull 30(12): 2345-2351. doi: 10.1248/bpb.30.2345
  13. Cianchi F, Cortesini C, Fantappie O, Messerini L, Sardi I, Lasagna N, Perna F, Fabbroni V, Di Felice A, Perigli G, Mazzanti R, Masini E (2004) Cyclooxygenase-2 activation mediates the proangiogenic effect of nitric oxide in colorectal cancer. Clin Cancer Res 10(8): 2694-2704. doi: 10.1158/1078-0432.ccr-03-0192
  14. Lee SB, Lee WS, Shin JS, Jang DS, Lee KT (2017) Xanthotoxin suppresses LPS-induced expression of iNOS, COX-2, TNF-α, and IL-6 via AP-1, NF-κB, and JAK-STAT inactivation in RAW 264.7 macrophages. Int Immunopharmacol 49: 21-29. doi: 10.1016/j.intimp.2017.05.021
  15. Sung BK, Chung HY (2005) Significances of Molecular Inflammation and Energy Metabolism during Aging. Korean Society of Cancer Prevention 10(1): 16-17. doi: KMID/1140120050100010006
  16. Nam HS, Jung JW, Kim DW, Ha HC (2017) Antioxidant and anti-inflammatory activities of hot water extracts of Ligularia fischeri. Korean J of Food Preserv 24(6): 834-841. doi: 10.11002/kjfp.2017.24.6.834
  17. Yoon YI, Chung MY, Hwang JS, Goo TW, Ahn MY, Lee YB, Han MS, Yun EY (2014) Anti-inflammatory Effect of Oxya chinensis sinuosa Ethanol Extract in LPS-induced RAW 264.7 Cells. Journal of Life Science 24(4): 370-376. doi: 10.5352/JLS.2014.24.4.370
  18. Han SH, Woo, NRY, Lee SD, Kang MH (2006) Antioxidaitve and Antibacterial Activities of Endemic Plants Extracts in Korea. The Korean Society of Medicinal Crop Science 14(1): 49-55. doi: article/JAKO200603042372593.page
  19. Kim EJ, Choi JY, Yu Mr, Kim MY, Lee Sh, Lee BH (2012) Total Polyphenols, Total Flavonoid Contents, and Antioxidant Activity of Korean Natural and Medicinal Plants. Korean J. Food Sci. Technol 44(3): 337-342. doi: 10.9721/KJFST.2012.44.3.337
  20. Chen YR (2007) Studies on the Chemical Constituents of Crysinus hastatus (Thunb.) Copel. Dissertation, University of China
  21. Song HS, Kim SM (2016) Distribution and Habitat Condition of Crypsinus hastatus in Buyeogun. The Korean Society of Medicinal Crop Science 24(1): 27-30. doi: 10.7783/KJMCS.2016.24.1.27
  22. Song HS, Gim MH, Lee GL, Kim SM (2013) Distribution of Medicinal Plants included in the Korean Pharmacopoeia at Cheongoksan Bonghwagun in Korea. The Korean Society of Medicinal Crop Science 21(4): 268-275. doi: 10.7783/KJMCS.2013.21.4.268
  23. Choi HR, Park JS, Kim KM, Kim MS, Ko KW, Hyun CG, Ahn JW, Seo JH, Kim SY (2018) Enhancing the antimicrobial effect of genistein by biotransformation in microbial system. Journal of Industrial and Engineering Chemistry. 63: 255-261. doi:10.1016/j.jiec.2018.02.023
  24. Hong HH, Park TJ, Kang MS, Kim SY (2021) Anti-inflammatory Activity of Beta vulgaris Extract Using Biorenovation in LPS-stimulated RAW 264.7 Cells. Korean Society for Biotechnology and Bioengineering Journal 36(2): 123-129. doi: 10.7841/ksbbj.2021.36.2.123
  25. Lee KM, Kim JH, Kang KH, Hwang JH, Kim SY (2021) Whitening Activities of Brassica oleracea sprout Biorenovated Extract in B16F10 Melanoma Cells. Korean Society for Biotechnology and Bioengineering Journal 36(2): 139-144. doi: 10.7841/ksbbj.2021.36.2.139
  26. Kim MS, Park TJ, Lim JS, Kim SY (2019) Effect of Agaricus biorenovate Extract on Collagen Synthesis and Matrix Metalloproteinase-1 Production in Human Dermal Fibroblast. Korean Society for Biotechnology and Bioengineering Journal 34(1): 49-53. doi: 10.7841/ksbbj.2019.34.1.49
  27. Koirala1 M, Lee YK, Kim MS, Chung YC, Park JS, Kim SY (2019) Biotransformation of Naringenin by Bacillus amyloliquefaciens Into Three Naringenin Derivatives. Natural Product Communications 14(5): 1934578X1985197. doi: 10.1177/1934578X19851971
  28. Charles J. Lowenstein, Elizaveta Padalko (2004) iNOS (NOS2) at a glance. J Cell Sci 117(14): 2865-2867. doi: 10.1242/jcs.01166
  29. Kany S, Vollrath JT, Relja B (2019) Cytokines in Inflammatory Disease. Int J Mol Sci 20(23): 6008. doi: 10.3390/ijms20236008
  30. Timoshenko AV, Lala PK, Chakraborty C (2004) PGE2-mediated upregulation of iNOS in murine breast cancer cells through the activation of EP4 receptors. Int J Cancer 108(3): 384-389. doi: 10.1002/ijc.11575
  31. Aktan F (2004) iNOS-mediated nitric oxide production and its regulation. Life Sci 75(6): 639-653. doi: 10.1016/j.lfs.2003.10.042
  32. E Molina-Holgado 1, S Ortiz, F Molina-Holgado, C Guaza (2000) Induction of COX-2 and PGE(2) biosynthesis by IL-1beta is mediated by PKC and mitogen-activated protein kinases in murine astrocytes. Br J Pharmacol 131(1): 152-159. doi: 10.1038/sj.bjp.0703557
  33. Kim MS, Park JS, Chung YC, Jang SC, Hyun CG, Kim SY (2019) AntiInflammatory Effects of Formononetin 7-O-phosphate, a Novel Biorenovation Product, on LPS-Stimulated RAW 264.7 Macrophage Cells. Molecules. 24(21): 3910. doi : 10.3390/ molecules24213910