Browse > Article
http://dx.doi.org/10.3839/jabc.2022.007

Anti-inflammatory effect of Crypsinus hastatus biorenovation extract  

Lee, Kyung-Mi (Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University)
Choi, Byeong Min (Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University)
Park, Tae-Jin (Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University)
Hong, Hyehyun (Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University)
Kim, Seung-Young (Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University)
Publication Information
Journal of Applied Biological Chemistry / v.65, no.1, 2022 , pp. 49-55 More about this Journal
Abstract
Biorenovation is a method for converting materials using the enzyme properties of microorganisms. Natural products converted by that method increase physiological activity or reduce cytotoxicity. In this study, we investigated the anti-inflammatory activity of crypsinus hastatus prothallium (CH) and biorenovated CH prothallium (CHB) using RAW 264.7 cells stimulated with lipopolysaccharide (LPS). CHB inhibited the production of nitric oxide, prostaglandin E2 and cytokines (interleukin-6, interleukin-1β, tumor necrosis factor-α) compared to CH at a concentration of 50-200 ㎍/mL. In addition, CHB concentration of 200 ㎍/mL inhibited the expression of inducible nitric oxide synthase and cyclooxygenase-2 protein by LPS stimulation to the level of the untreated control group. These results indicate that CHB could be a novel anti-inflammatory agent for cosmetic and pharmaceutical ingredients.It also suggests that the application of biorenovation has potential usefulness in developing anti-inflammatory materials. It also suggests that the application of bio-renovation has potential usefulness in the development of inflammatory material. We applied Biorenovation technology to Distylium racemosum extract (DR) to generate Distylium racemosum biorenovation product (DRB), and investigated the anti-inflammatory properties of DRB in lipopolysaccharide (LPS)-treated RAW264.7 macrophages. We are applying technology to Biorenovation Distylium racemosum extract (DR) Distylium racemosum was to create a biorenovation product (DRB), lipopolysaccharide (LPS) investigated the anti-inflammatory properties of DRB in RAW264.7 macrophages treated for.
Keywords
Anti-inflammatory; Biorenovation; Crypsinus hastatus (Thunb.) Copel; Inducible nitric oxide synthase; RAW 264.7 cell;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Sung BK, Chung HY (2005) Significances of Molecular Inflammation and Energy Metabolism during Aging. Korean Society of Cancer Prevention 10(1): 16-17. doi: KMID/1140120050100010006
2 E Molina-Holgado 1, S Ortiz, F Molina-Holgado, C Guaza (2000) Induction of COX-2 and PGE(2) biosynthesis by IL-1beta is mediated by PKC and mitogen-activated protein kinases in murine astrocytes. Br J Pharmacol 131(1): 152-159. doi: 10.1038/sj.bjp.0703557   DOI
3 Sherwood ER, Toliver-Kinsky T (2004) Mechanisms of the inflammatory response. Best Pract Res Clin Anaesthesiol 18(3): 385-405. doi: 10.1016/j.bpa.2003.12.002   DOI
4 Libby P (2007) Inflammation mechanisms: the molecular basis of inflammation and disease. Nutr Rev 65(12 Pt 2): S140-S146. doi: 10.1111/j.1753-4887.2007.tb00352.x   DOI
5 Kim KH, Jeong MH, Shin JH, Joo SB, Kim W, Lee SU, Kim KH, Kim NH, Cho JH, Park JC, Na KJ, Ahn YK, Cho JG, Ahn BH, Park JC, Kang JC (2000) The Role of Chronic Infection and Inflammation in Korean Patients with Coronary Artery Disease. Korean Circulation J 30(9): 1107-1116. doi:10.4070/kcj.2000.30.9.1107   DOI
6 Strowig T, Henao-Mejia J, Elinav E, Flavell R (2012) Inflammasomes in health and disease. Nature 481(7381): 278-286. doi: 10.1038/nature10759   DOI
7 Cianchi F, Cortesini C, Fantappie O, Messerini L, Sardi I, Lasagna N, Perna F, Fabbroni V, Di Felice A, Perigli G, Mazzanti R, Masini E (2004) Cyclooxygenase-2 activation mediates the proangiogenic effect of nitric oxide in colorectal cancer. Clin Cancer Res 10(8): 2694-2704. doi: 10.1158/1078-0432.ccr-03-0192   DOI
8 Choi HJ, Eun JS, Park YR, Kim DK, Li R, Moon WS, Park JM, Kim HS, Cho NP, Cho SD, Soh Y (2008) Ikarisoside A inhibits inducible nitric oxide synthase in lipopolysaccharide-stimulated RAW 264.7 cells via p38 kinase and nuclear factor-kappaB signaling pathways. Eur J Pharmacol 601(1-3): 171-178. doi: 10.1016/j.ejphar.2008.09.032   DOI
9 Wei S, Yang D, Yang J, Zhang X, Zhang J, Fu J, Zhou G, Liu H, Lian Z, Han H (2019) Overexpression of Toll-like receptor 4 enhances LPS-induced inflammatory response and inhibits Salmonella Typhimurium growth in ovine macrophages. Eur J Cell Biol 98(1): 36-50. doi: 10.1016/j.ejcb.2018.11.004   DOI
10 Tao MQ, Ji CL, Wu YJ, Dong JY, Li Y, Olatunji OJ, Zuo J (2020) 1,7-Dihydroxy-3,4-Dimethoxyxanthone Inhibits Lipopolysaccharide-Induced Inflammation in RAW264.7 Macrophages by Suppressing TLR4/NF-κB Signaling Cascades. Inflammation 43(5): 1821-1831. doi: 10.1007/s10753-020-01256-3   DOI
11 Lee SB, Lee WS, Shin JS, Jang DS, Lee KT (2017) Xanthotoxin suppresses LPS-induced expression of iNOS, COX-2, TNF-α, and IL-6 via AP-1, NF-κB, and JAK-STAT inactivation in RAW 264.7 macrophages. Int Immunopharmacol 49: 21-29. doi: 10.1016/j.intimp.2017.05.021   DOI
12 Hong HH, Park TJ, Kang MS, Kim SY (2021) Anti-inflammatory Activity of Beta vulgaris Extract Using Biorenovation in LPS-stimulated RAW 264.7 Cells. Korean Society for Biotechnology and Bioengineering Journal 36(2): 123-129. doi: 10.7841/ksbbj.2021.36.2.123   DOI
13 Kany S, Vollrath JT, Relja B (2019) Cytokines in Inflammatory Disease. Int J Mol Sci 20(23): 6008. doi: 10.3390/ijms20236008   DOI
14 Yoon YI, Chung MY, Hwang JS, Goo TW, Ahn MY, Lee YB, Han MS, Yun EY (2014) Anti-inflammatory Effect of Oxya chinensis sinuosa Ethanol Extract in LPS-induced RAW 264.7 Cells. Journal of Life Science 24(4): 370-376. doi: 10.5352/JLS.2014.24.4.370   DOI
15 Oishi Y, Manabe I (2018) Macrophages in inflammation, repair and regeneration. Int Immunol 30(11): 511-528. doi: 10.1093/intimm/dxy054   DOI
16 Baeuerle PA, Henkel T (1994) Function and activation of NF-kappa B in the immune system. Annu Rev Immunol 12: 141-179. doi: 10.1146/annurev.iy.12.040194.001041   DOI
17 Kim JB, Han AR, Park EY, Kim JY, Cho W, Lee J, Seo EK, Lee KT (2007) Inhibition of LPS-induced iNOS, COX-2 and cytokines expression by poncirin through the NF-kappaB inactivation in RAW 264.7 macrophage cells. Biol Pharm Bull 30(12): 2345-2351. doi: 10.1248/bpb.30.2345   DOI
18 Kim EJ, Choi JY, Yu Mr, Kim MY, Lee Sh, Lee BH (2012) Total Polyphenols, Total Flavonoid Contents, and Antioxidant Activity of Korean Natural and Medicinal Plants. Korean J. Food Sci. Technol 44(3): 337-342. doi: 10.9721/KJFST.2012.44.3.337   DOI
19 Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L (2017) Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9(6): 7204-7218. doi: 10.18632/oncotarget.23208   DOI
20 Kim MS, Park JS, Chung YC, Jang SC, Hyun CG, Kim SY (2019) AntiInflammatory Effects of Formononetin 7-O-phosphate, a Novel Biorenovation Product, on LPS-Stimulated RAW 264.7 Macrophage Cells. Molecules. 24(21): 3910. doi : 10.3390/ molecules24213910   DOI
21 Chen YR (2007) Studies on the Chemical Constituents of Crysinus hastatus (Thunb.) Copel. Dissertation, University of China
22 Kim MS, Park TJ, Lim JS, Kim SY (2019) Effect of Agaricus biorenovate Extract on Collagen Synthesis and Matrix Metalloproteinase-1 Production in Human Dermal Fibroblast. Korean Society for Biotechnology and Bioengineering Journal 34(1): 49-53. doi: 10.7841/ksbbj.2019.34.1.49   DOI
23 Song HS, Gim MH, Lee GL, Kim SM (2013) Distribution of Medicinal Plants included in the Korean Pharmacopoeia at Cheongoksan Bonghwagun in Korea. The Korean Society of Medicinal Crop Science 21(4): 268-275. doi: 10.7783/KJMCS.2013.21.4.268   DOI
24 Koirala1 M, Lee YK, Kim MS, Chung YC, Park JS, Kim SY (2019) Biotransformation of Naringenin by Bacillus amyloliquefaciens Into Three Naringenin Derivatives. Natural Product Communications 14(5): 1934578X1985197. doi: 10.1177/1934578X19851971   DOI
25 Aktan F (2004) iNOS-mediated nitric oxide production and its regulation. Life Sci 75(6): 639-653. doi: 10.1016/j.lfs.2003.10.042   DOI
26 Nam HS, Jung JW, Kim DW, Ha HC (2017) Antioxidant and anti-inflammatory activities of hot water extracts of Ligularia fischeri. Korean J of Food Preserv 24(6): 834-841. doi: 10.11002/kjfp.2017.24.6.834   DOI
27 Song HS, Kim SM (2016) Distribution and Habitat Condition of Crypsinus hastatus in Buyeogun. The Korean Society of Medicinal Crop Science 24(1): 27-30. doi: 10.7783/KJMCS.2016.24.1.27   DOI
28 Choi HR, Park JS, Kim KM, Kim MS, Ko KW, Hyun CG, Ahn JW, Seo JH, Kim SY (2018) Enhancing the antimicrobial effect of genistein by biotransformation in microbial system. Journal of Industrial and Engineering Chemistry. 63: 255-261. doi:10.1016/j.jiec.2018.02.023   DOI
29 Lee KM, Kim JH, Kang KH, Hwang JH, Kim SY (2021) Whitening Activities of Brassica oleracea sprout Biorenovated Extract in B16F10 Melanoma Cells. Korean Society for Biotechnology and Bioengineering Journal 36(2): 139-144. doi: 10.7841/ksbbj.2021.36.2.139   DOI
30 Charles J. Lowenstein, Elizaveta Padalko (2004) iNOS (NOS2) at a glance. J Cell Sci 117(14): 2865-2867. doi: 10.1242/jcs.01166   DOI
31 Timoshenko AV, Lala PK, Chakraborty C (2004) PGE2-mediated upregulation of iNOS in murine breast cancer cells through the activation of EP4 receptors. Int J Cancer 108(3): 384-389. doi: 10.1002/ijc.11575   DOI
32 Han SH, Woo, NRY, Lee SD, Kang MH (2006) Antioxidaitve and Antibacterial Activities of Endemic Plants Extracts in Korea. The Korean Society of Medicinal Crop Science 14(1): 49-55. doi: article/JAKO200603042372593.page
33 Lee HA, Song BR, Kim HR, Kim JE, Yun WB, Park JJ, Lee ML, Choi JY, Lee HS, Hwang DY (2017) Butanol extracts of Asparagus cochinchinensis fermented with Weissella cibaria inhibit iNOS-mediated COX-2 induction pathway and inflammatory cytokines in LPS-stimulated RAW264.7 macrophage cells. Exp Ther Med 14(5): 4986-4994. doi: 10.3892/etm.2017.5200   DOI