• Title/Summary/Keyword: Interlayer film

Search Result 171, Processing Time 0.026 seconds

Polarization splitting characteristics of the side-polished fiber coupler with a thin metal interlayer (금속층이 포함된 측면 연마 광섬유 결합기의 편광 분리 특성)

  • 김광택;황보승
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.3
    • /
    • pp.228-234
    • /
    • 2002
  • We report theoretical investigation on the polarization selective coupling characteristics of a side-polished fiber directional coupler with a thin metal interlayer. Based on normal mode theory the coupling properties of the device under various structural conditions are analyzed. It is shown that the coupling strength between TE modes weakens rapidly with increase or metal interlayer thickness, whereas that between TM modes becomes stronger. The design conditions of the polarization splitter using the coupler to achieve high extinction ratio and low insertion loss are presented.

The effects of TiO2 interlayer phase transition on structural and electrical properties of PLZT Thin Films (TiO2 Interlayer의 상변화에 따른 PLZT 박막의 구조 및 전기적 특성)

  • Lee, Chul-Su;Yoon, Ji-Eon;Hwang, Dong-Hyun;Cha, Won-Hyo;Sona, Young-Gook
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.6
    • /
    • pp.446-452
    • /
    • 2007
  • [ $(Pb_{1.1},La_{0.08})(Zr_{0.65}.Ti_{0.35})O_3$ ] thin films on the $Pt/Ti/SiO_2/Si$, $TiO_2(interlayer)/Pt/Ti/SiO_2/Si$ substrate were fabricated by the R.F. magnetron-sputtering method and considered their characteristics depending on $TiO_2$ interlayer. Changing the deposition conditions of $TiO_2$ interlayer, we obtained $TiO_2$ anatase single phase and rutile single phase. PLZT was deposited on these substrates and analyzed by x-ray diffraction(XRD) for there crystallinity and orientation. To investigate $PLZT-TiO_2$, $TiO_2-Pt$ interface, glow discharge spectrometer(GDS) analysis was carried out and we performed electrical measurements for dielectric properties of PLZT thin films. The PLZT thin film on $TiO_2$ anatase interlayer was found to have (110)-preferred orientation and 12.6 ${\mu}C/cm^2$ remaining polarization value.

Effect of Ti Interlayer Thickness on Epitaxial Growth of Cobalt Silicides (중간층 Ti 두께에 따른 CoSi2의 에피텍시 성장)

  • Choeng, Seong-Hwee;Song, Oh-Sung
    • Korean Journal of Materials Research
    • /
    • v.13 no.2
    • /
    • pp.88-93
    • /
    • 2003
  • Co/Ti bilayer structure in Co salicide process helps to the improvement of device speed by lowering contact resistance due to the epitaxial growth of $CoSi_2$layers. We investigated the epitaxial growth and interfacial mass transport of $CoSi_2$layers formed from $150 \AA$-Co/Ti structure with two step rapid thermal annealing (RTA). The thicknesses of Ti layers were varied from 20 $\AA$ to 100 $\AA$. After we confirmed the appropriate deposition of Ti film even below $100\AA$-thick, we investigated the cross sectional microstructure, surface roughness, eptiaxial growth, and mass transportation of$ CoSi_2$films formed from various Ti thickness with a cross sectional transmission electron microscopy XTEM), scanning probe microscopy (SPM), X-ray diffractometery (XRD), and Auger electron depth profiling, respectively. We found that all Ti interlayer led to$ CoSi_2$epitaxial growth, while $20 \AA$-thick Ti caused imperfect epitaxy. Ti interlayer also caused Co-Ti-Si compounds on top of $CoSi_2$, which were very hard to remove selectively. Our result implied that we need to employ appropriate Ti thickness to enhance the epitaxial growth as well as to lessen Co-Ti-Si compound formation.

CrC Interlayer Effect on Tribological Properties of Amorphous Carbon Deposited by UBMS Method (비대칭 마그네트론 스퍼터로 증착된 비정질 탄소박막의 트라이볼로지 특성에서 CrC 삽입층 효과에 대한 연구)

  • Kim, Phil Jung;Park, Yong Seob
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.7
    • /
    • pp.475-480
    • /
    • 2018
  • We investigated the tribological properties of amorphous carbon (a-C) films deposited with CrC interlayers of various thicknesses as the adhesive layer. A-C and CrC thin films were deposited using the unbalanced magnetron (UBM) sputtering method with graphite and chromium as the targets. CrC films as the interlayer were fabricated under a-C films, and various structural, surface, and tribological properties of a-C films deposited with various CrC interlayer thicknesses were investigated. With various CrC interlayer thicknesses under a-C films, the tribological properties of CrC/a-C films were improved; the increased film thickness exhibited a maximum high hardness of over 27.5 GPa, high elastic modulus of over 242 GPa, critical load of 31 N, residual stress of 1.85 GPa, and a smooth surface below 0.09 nm at the condition of 30-nm CrC thickness.

Microstructure and Ferroelectric Properties of PZT Thin Films Deposited on various Interlayers by R.F. Magnetron Sputtering (R.F. Magnetron Sputtering으로 다양한 Interlayer 층위에 형성시킨 PZT 박막의 미세구조와 강유전 특성)

  • Park, Chul-Ho;Choi, Duck-Young;Son, Young-Guk
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.8
    • /
    • pp.742-749
    • /
    • 2002
  • The PZT thin films werre deposited on Pt/Ti/$SiO_2$/Si substrate by R. F. magnetron sputtering with $Pb_{1.1}Zr_{0.53}Ti_{0.47}O_3$ target. When interlayers(PbO, $TiO_2$, PbO/$TiO_2$) were inserted between PZT and Pt, the crystallization of the PZT thin films was considerably improved and the processing temperature was lowered. Compared to the pure PZT thin films, dielectric constant, dielectric loss and polarization properties of PZT thin films with interlayers were considerably improved. From XPS depth profile analysis, it was confirmed that PZT thin films and interlayers existed independently. In particular, PZT thin films deposited on interlayer(PbO/$TiO_2$) showed the best dielectric property (${\varepsilon}_r$=414.94, tan${\delta}$=0.0241, Pr=22${\mu}C/cm^2$).

CHARACTERISTICS OF DIAMONDLIKE CARBON COATED ALUMINA SEALS AT TEMPERATURES UP TO $400^{\circ}C$ (플라즈마 증착방식에 의해 DLC코팅된 알루미나 세라믹의 코팅박막 특성에 관한 연구)

  • Ok, Chul-Ho;Kim, Byoung-Yong;Kang, Dong-Hun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.397-397
    • /
    • 2007
  • Diamondlike carbon (DLC) coatings were deposited on alumina ceramic seals using a plasma immersion ion deposition technique (PIID). Then they were subjected to tribological tests using a pin-on-disc tribometer under a high load (1.3 GPa) and under elevated temperatures up to 400C. Coefficients of friction (COFs) were recorded and compared with that of the untreated alumina while the wear tracks were analyzed using SEM with EDS to characterize the DLC films. To enhance the DLC adhesion to the substrate, various interlayers including Si and Cr were deposited using the PIID process or an ion beam assisted deposition (IBAD) method. It was observed that the DLC coating, if adhering well to the substrate, reduced the COFs significantly, from 0.4-0.8 for the uncoated alumina to about 0.05-0.1, within the tested temperature range. The adhesion was determined by the interlayer type and possibly by the application method. Cr interlayer did not perform as well as the Si interlayer. This could also be due to the fact that the Cr interlayer and the subsequent DLC coating had to be done in two different processing systems, while both the Si interlayer and the subsequent DLC film were deposited in one system without breaking the chamber. The coating failure mode was found to be delamination between the Cr and the alumina substrate. In contrast, the Si interlayer with proper DLC deposition procedures resulted in very good adhesion and hence excellent tribological performance. Further study may lead to future DLC applications of ceramic seals.

  • PDF

Nanocrystalline Diamond Coating on Steel with SiC Interlayer (철강 위에 SiC 중간층을 사용한 나노결정질 다이아몬드 코팅)

  • Myung, Jae-Woo;Kang, Chan Hyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.2
    • /
    • pp.75-80
    • /
    • 2014
  • Nanocrystalline diamond(NCD) films on steel(SKH51) has been investigated using SiC interlayer film. SiC was deposited on SKH51 or Si wafer by RF magnetron sputter. NCD was deposited on SiC at $600^{\circ}C$ for 0.5~4 h employing microwave plasma CVD. Film morphology was observed by FESEM and FIB. Film adherence was examined by Rockwell C adhesion test. The growth rate of NCD on SiC/Si substrate was much higher than that on SiC/SKH51. During particle coalescence, NCD growth rate was slow since overall rate was determined by the diffusion of carbon on SiC surface. After completion of particle coalescence, NCD growth became faster with the reaction of carbon on NCD film controlling the whole process. In the case of SiC/SKH51 substrate, a complete NCD film was not formed even after 4 h of deposition. The adhesion test of NCD/SiC/SKH51 samples revealed a delamination of film whereas that of SiC/SKH51 showed a good adhesion. Many voids of less than 0.1 ${\mu}m$ were detected on NCD/SiC interface. These voids were believed as the reason for the poor adhesion between NCD and SiC films. The origin of voids was due to the insufficient coalescence of diamond particles on SiC surface in the early stage of deposition.

The Effect of Grain Size on the Stress Shift toward Tensile Side by Deposition Interruptions in Copper Thin Films (구리 박막 제조중 증착 중단시 박막 결정립 크기 변화가 인장응력 방향으로의 응력 이동에 미치는 영향)

  • Lee, Seri;Oh, Seungkeun;Kim, Youngman
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.6
    • /
    • pp.303-310
    • /
    • 2014
  • In this study, the average in-situ stress in metallic thin film was measured during deposition of the Cu thin films on the Si(111) wafer and then the phenomenon of stress shift by the interruption of deposition was measured using Cu thin films. We have observed the stress shift in accordance with changing amount of atom's movement between the surface and grain boundary through altering the grain size of the Cu thin film with variety of parameters. The grain size is known to be affected on the deposition rate, film thickness and deposition temperature. As a experimental results, the these parameters was not adequate to explain stress shift because these parameters affect directly on the amount of atom's movement between the surface and grain boundary as well as the grain size. Thus, we have observed the stress shift toward tensile side in accordance with the grain size changing through the interlayer deposition. From an experiment with inserting interlayer before deposit Cu, in thin film which has big grain size with high roughness, amount of stress movement is higher along direction of tensile stress after deposition that means, after deposition process, driving force of atoms moving in grain boundary and on the surface of the film is relatively higher than before.

Development of High-Performance LNMO Based Thin-Film Battery through Amorphous V2O5 Interlayer Insertion (비정질 V2O5 중간층 삽입을 통한 고성능 LNMO기반 박막 배터리 개발)

  • Kwon, Oh Hyuk;Kim, Jong Heon;Park, Jun Seob;Kim, Hyun-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.2
    • /
    • pp.194-198
    • /
    • 2022
  • All-solid-state thin-film battery can realize the integration of electronic circuits into small devices. However, a high voltage cathode material is required to compensate for the low energy density. Therefore, it is necessary to study all-solid-state thin-film battery based on the high voltage cathode material LNMO. Nevertheless, the electrochemical properties deteriorate due to the problem of the interface between LiNi0.5Mn1.5O4 (LNMO) and the solid electrolyte LiPON. In this study, to solve this problem, amorphous V2O5 was deposited as an interlayer between LNMO and LiPON. We confirmed the possibility of improving cycle performance of LNMO based thin-film battery. We expect that the results of this study can extend the battery lifespan of small devices using LNMO based all-solid-state thin-film battery.