• Title/Summary/Keyword: Interlayer film

Search Result 171, Processing Time 0.028 seconds

Study on Adhesion of DLC Films with Interlayer (중간층을 이용한 DLC 박막의 밀착력에 관한 연구)

  • Kim, Gang-Sam;Cho, Yong-Ki
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.3
    • /
    • pp.127-131
    • /
    • 2010
  • Adhesion of DLC film is very significant property that exhibits wear resistance, chemical inertness and high hardness when being deposited to metal substrate. This study was considered that change adhesion of DLC film produced by Plasma Enhanced Chemical Vapor Deposition can be presented through inserting interlayer (Cr, Si-C:H). The thickness of interlayer was result of changing adhesion and residual stress. It was showed that the maximum 12 N of adhesion is on DLC film of Cr interlayer, and that a tendency is to be increased residual stress depend on the thickness. DLC film of Si-C:H interlayer represented 16 N of adhesion at $1{\mu}m$, whereas adhesion is decreased when the thickness is increased. For the interlayer at multi-layer, it was the best that adhesion of Cr/Si-C:H/DLC film was 33 N. Si-C:H interlayer at DLC film controled adhesion of the whole film. It was relaxed the internal stress of DLC film produced by inserting Cr, Si-C:H interlayer.

Tribology and Phase Evolution of Cr-Mo-N Coatings with Different Interlayer Condition (중간층 조건에 따른 Cr-Mo-N 막의 상형성 및 마찰마모 거동 연구)

  • Yang, Young-Hwan;Lyo, In-Woong;Park, Sang-Jin;Im, Dae-Sun;Oh, Yoon-Suk
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.6
    • /
    • pp.269-276
    • /
    • 2011
  • Phase evolution and tribological behavior of Cr-Mo-N multi compositional films with different interlayer were investigated. The films were deposited by hybrid PVD (Physical Vapor Deposition) system consisted of dc unbalanced magnetron (UBM) sputtering and arc ion plating (AIP) sources. A pure molybdenum (Mo) was used as sputtering target and also a pure Cr was used as AIP target to form the Cr-Mo-N films. Various growth planes were found, no textured surface, in all of the multi composition films. Maximum value of microhardness was measured in Cr-Mo-N film with Mo interlayer as 29 GPa. Composition film was mainly showed the aspect of the adhesive wear than CrN film. The friction coefficient was decreased from 0.6 for pure CrN coating to 0.35 for Cr-Mo-N film with Mo interlayer. This result may come from the formation of metal oxide tribo-layer which is known as solid lubricant during the wear test.

Interlayer Coupling Field in Spin Valves with CoEe/Ru/CoFe/FeMn Synthetic Antiferromagnet (Synthetic antiferromagnet CoFe/Ru/CoFe/FeMn을 이용한 스핀 밸브 구조의 interlayer coupling field)

  • Kim, K.Y.;Shin, K.H.;Kim, H.J.;Jang, S.H.;Kang, T.
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.5
    • /
    • pp.203-209
    • /
    • 2000
  • Top synthetic spin valves with structure Ta/NiFe/CoFe/Cu/CoFe(P 1)/Ru/CoFe(P2)/FeMn/Ta on Si (100) substrate with natural oxide were prepared by dc magnetron sputtering system. We have changed only the thickness in free layers and the thickness difference (Pl-P2) in two ferromagnetic layers separated by Ru, and investigated the effect of magnetic film thickness on interlayer coupling field in spin valve with synthetic antiferromagnet. According to the decrease of free layer thickness, interlayer coupling field was increased due to the magnetostatic coupling(orange peel coupling). In case of t$\_$P1/>t$\^$P2/, interlayer coupling field agreed well with the modified Neel model suggested in conventional spin valve structures by Kools et al. However, in case of t$\_$P1/>t$\^$P2/, it was found that the interlayer coupling field was not explained by the Modified Neel Model and was confirmed the necessity of further remodeling. The dependence of Cu thickness on the interlayer coupling field was investigated and 10 Oe of interlayer coupling field was obtained when the Cu thickness is 32 $\AA$.

  • PDF

XPS Study of MoO3 Interlayer Between Aluminum Electrode and Inkjet-Printed Zinc Tin Oxide for Thin-Film Transistor

  • Choi, Woon-Seop
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.6
    • /
    • pp.267-270
    • /
    • 2011
  • In the process of inkjet-printed zinc tin oxide thin-film transistor, the effect of metallic interlayer underneath of source and drain electrode was investigated. The reason for the improved electrical properties with thin molybdenum oxide ($MoO_3$) layer was due to the chemically intermixed state of metallic interlayer, aluminum source and drain, and oxide semiconductor together. The atomic configuration of three Mo $3d_3$ and $3d_5$ doublets, three different Al 2p core levels, two Sn $3d_5$, and four different types of oxygen O 1s in the interfaces among those layers was confirmed by X-ray photospectroscopy.

An ITO/Au/ITO Thin Film Gas Sensor for Methanol Detection at Room Temperature

  • Jeong, Cheol-Woo;Shin, Chang-Ho;Kim, Dae-Il;Chae, Joo-Hyun;Kim, Yu-Sung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.2
    • /
    • pp.77-80
    • /
    • 2010
  • Indium tin oxide (ITO) films with a 5 nm thick Au interlayer were prepared on glass substrates. The effects of the Au interlayer on the gas sensitivity for detecting methanol vapors were investigated at room temperature. The conductivity of the film sensor increased upon exposure to methanol vapor and the sensitivity also increased proportionally with the methanol vapor concentration. In terms of the sensitivity measurements, the ITO film sensor with an Au interlayer shows a higher sensitivity than that of the conventional ITO film sensor. This approach is promising in gaining improvement in the performance of ITO gas sensors used for the detection of methanol vapor at room temperature.

The Effects of Interlayer on the DLC Coating (중간층이 DLC 코팅에 미치는 영향)

  • Song, Jin-Soo;Nam, Tae-Woon
    • Corrosion Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.65-70
    • /
    • 2011
  • DLC is considered as the candidate material for application of moving parts in automotive components relatively in high pressure and temperature operating conditions for its high hardness with self lubrication and chemical inertness. The properties of interlayer between the substrate and the DLC film were studied. Arc ion plating method have been employed to deposit onto substrate and sputtering method was used for synthesizing DLC onto interlayer. Among these six types of interlayer, deposited DLC film onto TiCN showed excellent value for characteristics. From the results of analysis for physical properties of DLC films, it seems that the adhesion forces were more important factors than intrinsic mechanical properties such as hardness, roughness and wear resistance of DLC films. AFM(Atomic Force Microscope) was used for understanding roughness of DLC films. Hardnesses of the coating layers were identified by nano-indentation method and adhesions were checked by scratch method.

Performances of $C_{60}$ based n-type Organic Thin Film Transistor with A Doped Interlayer Using Bathophenanthroline (Bathophenanthroline를 interlayer로 적용한 $C_{60}$ 기반의 n형 유기박막트랜지스터의 성능)

  • Kim, Jeong-Su;Son, Hee-Geon;Yi, Moon-Suk
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.8
    • /
    • pp.7-12
    • /
    • 2010
  • In this paper, $C_{60}$ based Organic thin film transistor OTFTs) have been fabricated using BPhen(Bathophenanthroline) and BPhen doped with Cs interlayers between $C_{60}$ active layer and Al electrodes to improve the electrical performance. The addition of the BPhen layer resulted in enhanced performances by reducing surface roughness between organic-metal interface. And the contact resistance was reduced by using the BPhen doped with Cs interlayer with co-evaporation method. These performances suggests that the $C_{60}$ based OTFT with BPhen doped with Cs interlayer is a promising application in the fabrication of n-type organic transistors.

Investigation of the interface between diamond film and silicon substrate using transmission electron microscopy (투과 전자 현미경을 이용한 다이아몬드 박막과 실리콘 기판의 계면 연구)

  • 김성훈
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.2
    • /
    • pp.100-104
    • /
    • 2000
  • Diamond film was deposited on Si substrate by using microwave plasma-enhanced chemical vapor deposition (MPECVD) system. After thinning the cross section between diamond film and Si substrate by ion milling method, we investigated its interface via transmission electron microscopy We could observe that the diamond film was grown either directly on Si substrate or via the interlayer between diamond film and Si substrate. Thickness of the interlayer was varied along the cross section. The interlayer might mainly composed of Sic andlor amorphous carbon. We could observe the well-developed electron diffraction pattern of both Si and diamond around the interface. Based on this result, we can conjecture the initial growth behavior of diamond film on Si substrate.

  • PDF

A study on thermal behavior of Diamond-like carbon film (Diamond-like carbon film의 열적거동에 관한 연구)

  • Cho, kwang-Rae;Noh, Jeong-Yeon;So, Myoung-Gi
    • Journal of Industrial Technology
    • /
    • v.32 no.A
    • /
    • pp.119-123
    • /
    • 2012
  • Diamond-like carbon(DLC) thin films with interlayer were deposited on silicon substrate using a reactive sputtering method. The thermal stability of the films was investigated by annealing the films for 1hr in air in the range of 100 to $500^{\circ}C$. The $I_D/I_G$ ratio increased with increasing temperature as related to the $sp^3-to-sp^2$transition. Accordingly, G-position shifting started from $150^{\circ}C$ in the DLC films and from $270^{\circ}C$ in the a-Si/DLC films. Moreover, in the case of the a-Si/DLC films the film still observed even after annealing at $500^{\circ}C$. The thermal stability of the reactive sputtered DLC films appeared to be improved by the a-Si interlayer.

  • PDF