• Title/Summary/Keyword: Interlaminar properties

Search Result 107, Processing Time 0.026 seconds

Effect of Additive-added Epoxy on Mechanical and Dielectric Characteristics of Glass Fiber Reinforced Epoxy Composites (유리섬유강화 에폭시 레진 복합체의 기계적, 유전체 특성에 미치는 첨가제 함유 에폭시 영향)

  • Vu, Cuong Manh;Nguyen, Liem Thanh;Nguyen, Thai Viet;Choi, Hyoung Jin
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.726-734
    • /
    • 2014
  • Three different types of additives, thiokol, epoxidized natural rubber (ENR) and epoxidized linseed oil (ELO), were dispersed in an epoxy matrix before being used in glass fiber (GF) composites, and their effects on the mechanical and dielectric properties of epoxy resin and glass fiber reinforced epoxy composites (GF/EP) were examined. The addition of each of 7 phr ENR, 9 phr ELO and 5 phr thiokol into the epoxy resin increased the fracture toughness significantly by 56.9, 43.1, and 80.0%, respectively, compared to the unmodified resin. The mode I interlaminar fracture toughness of the GF/EP at propagation was also improved by 26.9, 18.3 and 32.7% when each of 7 phr ENR, 9 phr ELO, and 5 phr thiokol, respectively, was dispersed in the epoxy matrix. Scanning electron microscopy showed that the additives reduced crack growth in the GF/EP, whereas their dielectric measurements showed that all these additives had no additional effect on the real permittivity and loss factor of the GF/EP.

F.E. Analysis of the Radial Tire Inflation Using the Hyperelastic Properties of Rubber Compounds Sampled from a Tire (타이어 고무배합물의 초탄성을 고려한 레이디얼 타이어의 팽창에 관한 유한요소해석)

  • 김용우;김종국
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.125-134
    • /
    • 2003
  • In this study, Mooney-Rivlin 1st model and Mooney-Rivlin 3rd model are adopted as strain energy density functions of the rubber compounds of a radial tire. It is shown that the FE analysis using Mooney-Rivlin models for rubber compounds may provide good approximations by employing the appropriate strain range of experimental stress-strain data in a way to describe the stress-strain relationship accurately. Especially, Mooney-Rivlin 3rd model gives an accurate stress-strain relationship regardless of the fitting strain range used within the strain of 100%. The static nonlinear FE analysis of a tire inflation is performed by employing an axisymmetric model, which shows that the outside shapes of the tire before and after inflating the tire agree well with those of the real tire. Additionally, the deformations at crown center and turning point on sidewall, distribution of belt cord force, interlaminar shear strain are predicted in terms of variation of belt cord angle which is known as the most influential factor in inflation behavior of a tire.

Initial Crack Length Effect for the Interlaminar Mode I Energy Release Rate on a Laminated UHMWPE/CFRP Hybrid Composite (UHMWPE/CFRP 적층하이브리드 복합재의 층간 Mode I 에너지해방율에 미치는 초기균열길이의 영향)

  • Song, Sang Min;Kang, Ji Woong;Kwon, Oh Heon
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.3
    • /
    • pp.1-7
    • /
    • 2019
  • A variety of composite materials are applied to industries for the realization of light weight and high strength. Fiber-reinforced composites have different strength and range of application depending on the weaving method. The mechanical performance of CFRP(Carbon Fiber Reinforced Plastic) in many areas has already been demonstrated. Recently, the application of hybridization has been increasing in order to give a compensation for brittleness of CFRP. Target materials are UHMWPE (Ultra High Molecular Weight Polyethylene), which has excellent cutting and chemical resistance, so it is applied not only to industrial safety products but also to places that lining performance is expected for household appliances. In this study, the CFRP and UHMWPE of plain weave, which are highly applicable to curved products, were molded into laminated hybrid composite materials by autoclave method. The mechanical properties and the mode I failure behavior between the layers were evaluated. The energy release rate G has decreased as the initial crack length ratio increased.

Mode 1 Fracture Toughness Test of CNT/Epoxy Composites with Different CNT Content (CNT 함량에 따른 CNT/Epoxy 복합재료 제작 및 모드 1 파괴 인성 평가)

  • KWON, DONG-JUN;YOO, HYEONGMIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.1
    • /
    • pp.86-91
    • /
    • 2021
  • In order to save the energy in vehicles using renewable energy, it is necessary to reduce the weight of parts with polymer matrix composites. Carbon nanotube (CNT) is the nano-scale reinforcement used to increase the interlaminar strength of fiber reinforced composites or enhance the fracture toughness of polymer. However, since the degree of improvement in mechanical properties varies according to the various experimental conditions such as shape of reinforcement, types of matrix and dispersion of reinforcement, research to find the optimal conditions is essentially needed. In this study, CNT/epoxy composites with different CNT concentration were fabricated under the same conditions, and the optimal CNT content (2 wt%) was found through Mode 1 fracture toughness test. Furthermore, through optical microscopy, it was confirmed that the fracture toughness was rather decreased due to the CNT aggregation when the CNT content exceeded 2 wt%.

Fabrication of PP/Carbon Fiber Composites by Introducing Reactive Interphase and its Properties (반응성 고분자 계면상을 도입한 PP/탄소섬유 복합재료의 제조와 물성)

  • 김민영;김지홍;김원호;최영선;황병선
    • Polymer(Korea)
    • /
    • v.24 no.4
    • /
    • pp.556-563
    • /
    • 2000
  • In general, the development of thermoplastic composites has been confronted with difficult problems such as the weak bonding strength between fibers and matrix. However, now, such problems are being surmounted by the development of resins, the improvement of processes, and introduction of interphase. Especially, the introduction of interphase between fiber and matrix can help a dissipation of the impact energy and provide a good adhesion between fibers and matrix. In this study, polymeric interphase was introduced by electrodeposition, modified polypropylene was added to improve the weak bonding strength between interphase and polypropylene matrix. By evaluation of interlaminar shear strength and impact strength of the composites, it was found that composites with introduced composites showed higher mechanical properties than those of composites without interphase. Reactive polymers which have either anhydride or free acid functional group were used as interphase materials, and these polymers also behave as charge carrier in aqueous solution during the electrodeposition process. Weight gain on the carbon fibers was evaluated by changing process parameters such as concentration of solution, current density, and electrodeposition time.

  • PDF

Effect of Anodized Carbon Fiber Surfaces on Interfacial Adhesion of Carbon Fiber-reinforced Composites (양극산화된 탄소섬유가 복합재료의 계면결합력에 미치는 영향)

  • 박수진;김문한;최선웅;이재락
    • Polymer(Korea)
    • /
    • v.24 no.4
    • /
    • pp.499-504
    • /
    • 2000
  • The effect of anodic oxidation on high strength PAN-based carbon fibers has been studied in terms of surface functionality and surface energetics of the fiber surfaces, resulting in improving the mechanical properties of composites. According to FT-IR and XPS measurements, it reveals that the oxygen functional groups on fiber surfaces induced by an anodic oxidation largely influence the surface energetics of fibers or the mechanical interfacial properties of composites, such as the interlaminar shear strength (ILSS) of composites. According to the contact angle measurements based on the wicking rate of a test liquid, it is observed that anodic oxidation does lead to an increase in surface free energy of the carbon fibers, mainly due to the increase of its specific (or polar) component. From the surface energetic point of view, it is found that good wetting plays an important role in improving the degree of adhesion at interfaces between fiber and epoxy resin matrix of the resulting composites. Also, a direct linear relationship is shown between 01s/01s ratio and ILSS or between specific component and ILSS of the composites for this system.

  • PDF

Comparison of Mechanical and Interfacial Properties of Carbon Fiber Reinforced Recycled PET Composites with Thermoforming Temperature and Time (열 성형 온도 및 시간에 따른 탄소섬유 강화 재활용 PET 복합재료의 계면 및 기계적 물성 비교)

  • Baek, Yeong-Min;Shin, Pyeong-Su;Kim, Jong-Hyun;Park, Ha-Seung;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.30 no.3
    • /
    • pp.175-180
    • /
    • 2017
  • Currently, since carbon fiber reinforced plastics (CFRPs) are lightweight and have excellent physical properties, their demand has increased dramatically. Many works have studied the CFRPs based on recycled thermoplastics. In this study, the applicability of recycled composite was evaluated using recycled polyethylene terephthalate (PET). PET was collected from waste materials used in beverage bottles and processed to produce PET films. Optimal thermoforming temperature and time were analyzed by comparing the mechanical properties with forming temperature and time difference for producing PET films. CF mat and PET film were used to determine the suitable parameters for the optimum thermoforming of CF/PET composites. The mechanical properties of each thermoforming condition were verified by bending test. The degree of impregnation of the PET film into the CF mat was evaluated by cross-sectional photographs, whereas the interfacial properties were evaluated by interlaminar shear strength (ILSS). Ultimately, it was confirmed that the thermoforming condition for forming the CF/recycled PET composites yielding the optimal mechanical and interfacial properties was at $270^{\circ}C$ for 5 minutes.

Effect of Anodic Oxidation of H2SO4/HNO3 Ratio for Improving Interfacial Adhesion between Carbon Fibers and Epoxy Matrix Resins (탄소섬유와 에폭시 기지의 계면강도 증가를 위한 황산/질산 양극산화에 관한 영향)

  • Moon, Cheol-Whan;Jung, Gun;Im, Seung-Soon;Nah, Changwoon;Park, Soo-Jin
    • Polymer(Korea)
    • /
    • v.37 no.1
    • /
    • pp.61-65
    • /
    • 2013
  • In this work, the anodic oxidation of carbon fibers was carried out to enhance the mechanical interfacial properties of carbon fibers-reinforced epoxy matrix composites. The surface characteristics of the carbon fibers were studied by FTIR, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Also, the mechanical interfacial properties of the composites were studied with interlaminar shear strength (ILSS), critical stress intensity factor ($K_{IC}$), and critical strain energy release rate ($G_{IC}$). The anodic oxidation led to a significant change in the surface characteristics of the carbon fibers. The anodic oxidation of carbon fiber improved the mechanical interfacial properties, such as ILSS, $K_{IC}$, and $G_{IC}$ of the composites. The mechanical interfacial properties of the composites anodized at 20% sulfuric/nitric (3/1) were the highest values among the anodized carbon fibers. These results were attributed to the increase of the degree of adhesion at interfaces between the carbon fibers and the matrix resins in the composite systems.

Performance Evaluation of PAN Nanofiber Air Filter Fabricated by Electrospinning (전기방사에 의해 제조한 PAN 나노섬유 공기필터 성능평가)

  • Kim, Kyungcheol;Kim, Taeeun;Lee, JungKoo;Ahn, Jiwoong;Park, Sungho;Kim, Hyungman
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.11
    • /
    • pp.885-890
    • /
    • 2015
  • Nanomaterials possess unique mechanical, physical, and chemical properties. They are small, and have an ultrahigh surface area, making them suitable for air filter applications. Electrospinning has been recognized as an efficient technique for fabricating polymer nanofibers. In order to determine the optimum manufacturing conditions, the effects of several electrospinning process parameters on the diameter, orientation, and distribution of polyacrylonitrile (PAN) nanofiber are analyzed. To improve interlaminar fracture toughness and suppress delamination in the form of laminated non-woven fibers by using a heat roller, the performances of filter efficiency and pressure drop achieved with PAN nanofiber air filter are evaluated experimentally.

Mechanical Characteristics of CF Laminated Prepreg with UV-thermal Dual Curable Epoxy Resin (광·열경화형 수지를 이용한 탄소섬유 프리프레그의 물리적 특성)

  • Sim, Ji-hyun;Kim, Ji-hye;Park, Sung-min;Koo, Kwang-hoe;Jang, Key-wook;Bae, Jin-seok
    • Textile Coloration and Finishing
    • /
    • v.29 no.1
    • /
    • pp.37-44
    • /
    • 2017
  • An issue of major concern in the utilization of laminated composites based epoxy resin is associated with the occurrence of delaminations or interlaminar cracks, which may be related to manufacturing defects or are induced in service by low-velocity impacts. A strong interfacial filament/brittle epoxy resin bonding can, however, be combined with the high fracture toughness of weak interfacial bonding, when the filaments are arranged to have alternate sections of shear stress. To improve this drawback of the epoxy resin, UV-thermal dual curable resin were developed. This paper presents UV-thermal dual curable resin which were prepared using epoxy acrylate oligomer, photoinitiators, a thermal-curing agent and thermoset epoxy resin. The UV curing behaviors and characteristics of UV-thermal dual curable epoxy resin were investigated using Photo-DSC, DMA and FTIR-ATR spectroscopy. The mechanical properties of UV-thermal dual curable epoxy resin impregnated CF prepreg by UV curable resin content were measured with Tensile, Flextural, ILSS and Sharpy impact test. The obtained results showed that UV curable resin content improves the epoxy toughness.