• Title/Summary/Keyword: Interior Cabin Noise

Search Result 37, Processing Time 0.032 seconds

Analysis of Noise Contribution using Frequency Response Function and Measurements of Noise Distribution for Railway Interior Noise (주파수 응답 함수를 이용한 철도차량 실내소음 기여도 분석 및 분포도 측정)

  • 김재철;유원희
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.949-954
    • /
    • 1999
  • Speed-up and mass reduction of railway vehicle usually causes increased of the interior noise. One of the best ways to control the interior noise is to identify the noise level radiated from each of parts in the cabin. In this paper, we describe the method to estimate the interior noise nad evaluate the noise contribution to each of parts. This method is based that the sound pressure can be calculated by using the frequency response function and acceleration. According to analysis of the noise contribution, we validated that the noise radiated from the floor is the higher in the cabin. We also measured the noise distribution for the side and floor by using the microphone array in order to analyze the effect of the noise flowing into the cabin from the outdoors. Finally, we presented the plan of the interior noise reduction based on the noise levels radiated from each of parts.

  • PDF

The Study for Vibro-acoustic Noise Analysis in the Fuselage of Regional Turboprop Airplane (중형항공기 동체 소음해석 기법 연구)

  • Park, Illkyung;Kim, Sungjoon;Jung, Jinduck
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.3
    • /
    • pp.44-50
    • /
    • 2012
  • The noise reduction is important one of considerations in the process of a civil aircraft development program. External noise sources are classified into an air-born source and a structure-born source. Among these noise sources, the most affected noise source into a cabin is the air-born noise source from an engine or propeller. The external noise is transmitted into the cabin through the fuselage structure of airplane which are composed of an fuselage structure, an interior trim panel and an acoustic insulation layer between an fuselage structure and an interior trim panel. Therefore, appropriate fuselage structure and acoustic insulation layer is very important to reduce the internal noise level. In this paper, the vibro-acoustic coupled analysis of the cabin noise of the 80~90 seats regional turboprop aircraft is carried out to validate the acoustic analysis method using Direct BEM and FEM. The sound pressure level onto the fuselage skin is acquired by fan-source noise analysis using BEM, and which sound pressure is used as acoustic noise source in vibro-acoustic noise analysis for cabin noise analysis using FEM.

Excavator cabin modeling for noise analysis using SEA (SEA 를 이용한 굴삭기 차실 소음 모델 개발)

  • Kang, Junghwan;Park, Soodong;Kwak, Hyungtaek;Kim, Jooho;Kim, Seongjae;Kim, Indong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.156-158
    • /
    • 2014
  • The interior noise of an excavator cabin is important factor related to operation efficiency. For analyzing the cabin air-borne sound, the SEA cabin model was developed using VA One. Analysis result using measured surface SPL of cabin was compared with test data. And the noise reduction guide of cabin was suggested with contribution and sensitivity analysis results of major design variables using developed SEA analysis.

  • PDF

An application of the Statistical Energy Analysis for Absorbing and Soundproofing Materials of Vehicle (자동차용 흡.차음재의 성능분석을 위한 통계적 에너지 기법 적용의 검정)

  • Lee, Chang-Myung;Lee, Jun;Kim, Dae-Gon;Jung, Byoung-In
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1109-1113
    • /
    • 2001
  • Interior parts of a vehicle are getting important to reduce interior noise of car. Therefore, prior analysis of cabin noise related with interior parts are necessary at first design stage. Recently, Statistical Energy Analysis(SEA) has been suggested as a possible way for meddle of high frequency range analysis with interior parts. This article introduces an example of the application of SEA to predict air born noise of cabin of car.

  • PDF

A Study on Characteristics of Interior design materials in Leisure Boats & Yachts (레저보트${\cdot}$요트의 인테리어재료 특징에 관한 연구)

  • Byun Lyang-Soun
    • Korean Institute of Interior Design Journal
    • /
    • v.15 no.1 s.54
    • /
    • pp.158-165
    • /
    • 2006
  • The space of leisure boats & yachts is formed by interior design elements and shapes are formed by combination of those elements. By means of configuration of the design elements, space is made in a ship and patterns in an inside space are made through production. These space can be categorized as (1) cabin(common cabin, staterooms, one-cabin), (2) salon, (3) galleys & dinette, (4) heads(showers, toilets, bidets, sinks), (5) cockpit, (6) wheelhouses, navigation stations, (7) fore peaks, (8) engine room, (9) deck etc. Interior materials are classified into (1) walls(bulkheads & lining wall), (2) floors(sole), (3) ceilings(overheads), (4) doors & windows, (5) furniture, (6) lightings and (7) Hardware & decoration in large, medium and small sizes, which constitute interior design elements of a leisure boat & yacht. The materials used in leisure boats & yachts have properties of lightweight, noise and vibration resistance, fire & flame retardant, stability, strengths, lifespan, appearance and special operation in construction.

A Study on the Multi-Channel Active Noise Control for Noise Reduction of the Vehicle Cabin II : Semi-experiment (자동차 실내 소음저감을 위한 다채널 능동소음 제어에 관한 연구 II : 모의 실험)

  • Kim, H.S.;Lee, T.Y.;Shin, J.;Oh, J.E.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.6
    • /
    • pp.29-37
    • /
    • 1994
  • Active noise control of random noise which propatate in the vehicle cabin as a form of spherical wave is the target of this study. In the previous study, the adaptive algorithm for adaptive controller is presented for the application in active noise control system. And for the preliminary study of adaptive active noise control in vehicle cabin as a real system, a computer simulation is performed on the effectiveness of the adaptive algorithm in the amplitude of the pressure fluctuation. This work studies the implementation of multi-channel feedforward adaptive algorithm for the reduction of the noise inside a vehicle cabin using a number of secondary sources derived by adaptive filtering of reference noise source. Multi-channel adaptive feedforward algorithm are verified in numerical simulation and semi-experimental justification of developed system is made on a domestic passenger car. In the results of semi-experimental study, the noise of specific region in the interior of automobile are reduced for the appreciabe sound pressure level in the operating engine rpm and finally this study suggests the capabilities of the real time active noise control in 3 dimensional acoustic fields.

  • PDF

Interior Noise Reduction of Wheel Loader Using Transfer Path Analysis and Panel Contribution Analysis (전달 경로 분석과 패널 기여도 분석을 이용한 휠로더의 실내소음 저감에 관한 연구)

  • Kim, Bo-Yong;Shin, Chang-Woo;Jeong, Won-Tae;Park, Sung-Yong;Jang, Han-Kee;Kim, Seong-Jae;Kang, Yeong-June
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.8
    • /
    • pp.805-815
    • /
    • 2008
  • Transfer path analysis(TPA) and panel contribution analysis(PCA) have been used widely to reduce interior noise of mechanical systems. TPA enables us to decompose interior noise into air-borne and structure-borne noises and estimate the path contribution of noise sources. PCA is also used to identify the noise contribution of each sub-panel in vibro-acoustic systems. In this paper, TPA and PCA are applied to wheel loader, one of the heavy construction equipments. Firstly, TPA for air-borne noise is conducted to estimate the contribution of air-borne sources using pressure transfer function. Thereafter, TPA for structure -borne noise is employed to verify the results of air-borne source quantification through the synthesis of two results. Secondly, PCA is performed by both TPA using pressure transfer function between panels inside the cabin and boundry element method(BEM) for the cabin of wheel loader with various boundary conditions. As a results, it was found that TPA conducted by experiments and PCA accomplished by both experiments and BEM are very effective methods in analyzing the path and contribution of the noises for reducing an interior noise level in the wheel loader system.

An Application of the Statistical Energy Analysis for Absorbing and Soundproofing Materials of Vehicle (자동차용 흡.차음재의 성능분석을 위한 통계적 에너지 기법의 적용)

  • Lee, Chang-Myung;Lee, Jun;Kim, Dae-Gon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.1
    • /
    • pp.33-39
    • /
    • 2003
  • Interior parts of a vehicle are getting important to reduce interior noise. Therefore, prior analysis of cabin noise related with interior parts are necessary at first design stage. Recently, Statistical Energy Analysis(SEA) has been suggested as a possible way for high frequency range noise analysis of interior parts. The validity of noise analysis with SEA to interior parts has been preyed by comparing with experimental result, and the developed method with SEA has been applied in finding optimized interior parts package.

A Study of Interior Noise Reduction through In-Vehicle Measurement Test to the Windshield Wiper Motor System (차량용 윈드쉴드 와이퍼 모터의 단품 및 실차시험을 통한 소음 저감 연구)

  • 최창환;임상규
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.862-869
    • /
    • 1998
  • The interior noise generated by the windshield wiper system including a wiper motor, the motor mountings and linkages is considered as a structure-borne noise. The structureborne noise is closely related with the system vibration which was transmitted into interior cabin through the car body. In this study, the frequency characteristics of vibration in the wiper motor system were first identified through the frequency analysis. Then effects of the wiper motor mountings and linkages on the vehicle interior noise were studied through in-vehicle measurements. Finally a possibility of noise reduction at a certain frequency was revealed from the study.

  • PDF

Transmission Loss Estimation of HST using a Small Scale Reverberation Chamber (소형 잔향실을 이용한 동력 분산형 고속철도 차량의 투과손실 측정)

  • Kim, Tae-Min;Son, Chang-Hoon;Kim, Jeung-Tae;Kim, Jung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.302-307
    • /
    • 2010
  • Development of light-weight high speed train (HST) based on distributed motor control with the top speed of 350 km/hr has engendered a need for abatement of the interior noise of the train cabin. The development of noise abatement measures is crucial at the design stage of the train car since the noise transmission characteristics of the car structure directly influences the cabin interior noise. Since the transmission loss measurement using the entire car structure is often not feasible, especially at the initial stages of the train development, investigation of transmission characteristics using small-scale reverberation chamber can furnish useful alternative source of predicting the noise level. In the present study, white noise is generated at source and transmission loss estimated by performing measurement of a specimen in a scaled reverberation chamber. Comparison of measured values with the previously derived numerical values show good agreement in the overall trend but appreciable quantitative differences still remain.

  • PDF