• Title/Summary/Keyword: Interim crown

Search Result 12, Processing Time 0.029 seconds

Comparative evaluation of the fitness of anterior and posterior interim crowns fabricated by additive manufacturing (적층가공 방식으로 제작한 전치와 구치 임시보철물의 적합도 비교)

  • Park, Young-Dae;Kang, Wol
    • Journal of Technologic Dentistry
    • /
    • v.43 no.4
    • /
    • pp.153-159
    • /
    • 2021
  • Purpose: The purpose of this study was to assess the fitness of anterior and posterior interim crowns fabricated by three different additive manufacturing technologies. Methods: The working model was digitized, and single crowns (maxillary right central incisor and maxillary right first molar) were designed using computer-aided design software (DentalCad 2.2; exocad). On each abutment, interim crowns (n=60) were fabricated using three types of additive manufacturing technologies. Then, the abutment appearance and internal scan data of the interim crown was obtained using an intraoral scanner. The fitness of the interim crowns were evaluated by using the superimposition of the three-dimensional scan data (Geomagic Control X; 3D Systems). The one-way analysis of variance and Tukey posterior test were used to compare the results among groups (α=0.05). Results: A significant difference was found in the fitness of the interim crowns according to the type of additive manufacturing technology (p<0.05). The posterior interim crown showed smaller root mean square value than the anterior interim crown. Conclusion: Since the fitness of the posterior interim crown produced by three types of additive manufacturing technology were all within clinically acceptable range (<120 ㎛), it can be sufficiently used for the fabrication of interim crowns.

A Surface Treatment Technique for Interim Crown Fabricated by Three-Dimensional Printing with Digital Light-Processing Technology

  • Son, Keunbada;Lee, Jaesik;Lee, Kyu-Bok
    • Journal of Korean Dental Science
    • /
    • v.14 no.2
    • /
    • pp.79-89
    • /
    • 2021
  • Purpose: The technique introduced in this study describes a technique for surface treatment that applies a photocuring resin to the surface of an interim crown fabricated by three-dimensional (3D) printing without a conventional polishing method. The purpose of this study was to evaluate marginal and internal fit and the intaglio surface trueness of interim crowns after surface treatment of 3D-printed crowns for clinical application. Materials and Methods: An interim crown was fabricated using a 3D printer with digital light-processing technology, and the surface support was removed. After the posttreatment process, the resin was thinly applied to the surface of the interim crown and polymerized to solve the esthetic problem of the surface without the conventional polishing process. In addition, the marginal and internal fits were measured to verify the clinical use of this technique, and the trueness was evaluated to confirm the deformation of the inner surface according to the technical application of the outer surface of the interim crown. The difference before and after the evaluation by a statistical method was verified using an independent t-test (α=0.05). Result: There was no significant difference in the marginal and internal fit before and after the application of this technique (P>0.05). There was no significant difference in intaglio surface trueness before and after the application of this technique (P=0.963). Conclusion: There was no change in the marginal and internal fit or in intaglio surface trueness of the interim crowns to which this technology was applied. This surface treatment technique is a more convenient method for interim crowns fabricated using 3D-printing technology without the conventional polishing process.

Evaluating the accuracy (trueness and precision) of interim crowns manufactured using digital light processing according to post-curing time: An in vitro study

  • Lee, Beom-Il;You, Seung-Gyu;You, Seung-Min;Kim, Dong-Yeon;Kim, Ji-Hwan
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.2
    • /
    • pp.89-99
    • /
    • 2021
  • PURPOSE. This study aimed to compare the accuracy (trueness and precision) of interim crowns fabricated using DLP (digital light processing) according to post-curing time. MATERIALS AND METHODS. A virtual stone study die of the upper right first molar was created using a dental laboratory scanner. After designing interim crowns on the virtual study die and saving them as Standard Triangulated Language files, 30 interim crowns were fabricated using a DLP-type 3D printer. Additively manufactured interim crowns were post-cured using three different time conditions-10-minute post-curing interim crown (10-MPCI), 20-minute post-curing interim crown (20-MPCI), and 30-minute post-curing interim crown (30-MPCI) (n = 10 per group). The scan data of the external and intaglio surfaces were overlapped with reference crown data, and trueness was measured using the best-fit alignment method. In the external and intaglio surface groups (n = 45 per group), precision was measured using a combination formula exclusive to scan data (10C2). Significant differences in accuracy (trueness and precision) data were analyzed using the Kruskal-Wallis H test, and post hoc analysis was performed using the Mann-Whitney U test with Bonferroni correction (α=.05). RESULTS. In the 10-MPCI, 20-MPCI, and 30-MPCI groups, there was a statistically significant difference in the accuracy of the external and intaglio surfaces (P<.05). On the external and intaglio surfaces, the root mean square (RMS) values of trueness and precision were the lowest in the 10-MPCI group. CONCLUSION. Interim crowns with 10-minute post-curing showed high accuracy.

Evaluation of internal fit of interim crown fabricated with CAD/CAM milling and 3D printing system

  • Lee, Wan-Sun;Lee, Du-Hyeong;Lee, Kyu-Bok
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.4
    • /
    • pp.265-270
    • /
    • 2017
  • PURPOSE. This study is to evaluate the internal fit of the crown manufactured by CAD/CAM milling method and 3D printing method. MATERIALS AND METHODS. The master model was fabricated with stainless steel by using CNC machine and the work model was created from the vinyl-polysiloxane impression. After scanning the working model, the design software is used to design the crown. The saved STL file is used on the CAD/CAM milling method and two types of 3D printing method to produce 10 interim crowns per group. Internal discrepancy measurement uses the silicon replica method and the measured data are analyzed with One-way ANOVA to verify the statistic significance. RESULTS. The discrepancy means (standard deviation) of the 3 groups are $171.6\;(97.4){\mu}m$ for the crown manufactured by the milling system and 149.1 (65.9) and $91.1\;(36.4){\mu}m$, respectively, for the crowns manufactured with the two types of 3D printing system. There was a statistically significant difference and the 3D printing system group showed more outstanding value than the milling system group. CONCLUSION. The marginal and internal fit of the interim restoration has more outstanding 3D printing method than the CAD/CAM milling method. Therefore, the 3D printing method is considered as applicable for not only the interim restoration production, but also in the dental prosthesis production with a higher level of completion.

Effect of rinsing time on the accuracy of interim crowns fabricated by digital light processing: An in vitro study

  • Lee, Beom-Il;You, Seung-Gyu;You, Seung-Min;Kang, Seen-Young;Kim, Ji-Hwan
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.1
    • /
    • pp.24-35
    • /
    • 2021
  • PURPOSE. This study was to evaluate the effect of rinsing time on the accuracy of interim crowns fabricated by digital light processing. MATERIALS AND METHODS. The maxillary right first molar master die was duplicated using a silicone material, while a study die was produced using epoxy resin. Scans of the epoxy resin die were used in combination with CAD software to design a maxillary right first molar interim crown. Based on this design, 24 interim crowns were fabricated with digital light processing. This study examined the trueness and precision of products that were processed with one of the three different postprocessing rinsing times (1 min, 5 min, and 10 min). Trueness was measured by superimposing reference data with scanned data from external, intaglio, and marginal surfaces. Precision was measured by superimposing the scan data within the group. The trueness and precision data were analyzed using Kruskal-Wallis, nonparametric, and post-hoc tests, and were compared using a Mann-Whitney U test with Bonferroni correction (α=.05). RESULTS. The trueness of the external and intaglio surfaces of crowns varied significantly among the different rinsing times (P=.004, P=.003), but there was no statistically significant difference in terms of trueness measurements of the marginal surfaces (P=.605). In terms of precision, statistically significant differences were found among the external, intaglio, and marginal surfaces (P=.001). CONCLUSION. Interim crowns rinsed for 10 minutes showed high accuracy.

Assessment of effect of accelerated aging on interim fixed dental materials using digital technologies

  • Omar, Alageel;Omar, Alsadon;Haitham, Almansour;Abdullah, Alshehri;Fares, Alhabbad;Majed, Alsarani
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.6
    • /
    • pp.360-368
    • /
    • 2022
  • PURPOSE. This study assessed the physical and mechanical properties of interim crown materials fabricated using various digital techniques after accelerated aging. MATERIALS AND METHODS. Three groups of interim dental restorative materials (N = 20) were tested. The first group (CO) was fabricated using a conventional manual method. The second group (ML) was prepared from prefabricated resin blocks for the milling method and cut into specimen sizes using a cutting disc. The third group (3D) was additively manufactured using a digital light-processing (DLP) 3D printer. Aging acceleration treatments using toothbrushing and thermocycling simulators were applied to half of the specimens corresponding to three years of usage in the oral environment (N = 10). Surface roughness (Ra), Vickers microhardness, 3-point bending, sorption, and solubility tests were performed. A 2-way analysis of variance (ANOVA) and Fisher's multiple comparison test were used to compare the results among the groups. RESULTS. The mean surface roughness (Ra) of the resin after accelerated aging was significantly higher in the CO and ML groups than that before aging, but not in the 3D group. All groups showed reduced hardness after accelerated aging. The flexural strength values were highest in the 3D group, followed by the ML and CO groups after accelerated aging. Accelerated aging significantly reduced water sorption in the ML group. CONCLUSION. According to the tested material and 3D printer type, both 3D-printed and milled interim restoration resins showed higher flexural strength and modulus, and lower surface roughness than those prepared by the conventional method after accelerated aging.

Comparison of fracture strength, surface hardness, and color stain of conventionally fabricated, 3D printed, and CAD-CAM milled interim prosthodontic materials after thermocycling

  • Mesut Yildirim;Filiz Aykent;Mahmut Sertac Ozdogan
    • The Journal of Advanced Prosthodontics
    • /
    • v.16 no.2
    • /
    • pp.115-125
    • /
    • 2024
  • PURPOSE. The purpose of this in vitro study was to investigate the fracture resistance, surface hardness, and color stain of 3D printed, CAD-CAM milled, and conventional interim materials. MATERIALS AND METHODS. A total of 80 specimens were fabricated from auto polymerizing polymethyl methacrylate (PMMA), bis-acryl composite resin, CAD-CAM polymethyl methacrylate resin (milled), and 3D printed composite resin (printed) (n = 20). Forty of them were crown-shaped, on which fracture strength test was performed (n = 10). The others were disc-shaped specimens (10 mm × 2 mm) and divided into two groups for surface hardness and color stainability tests before and after thermal cycling in coffee solution (n = 10). Color parameters were measured with a spectrophotometer before and after each storage period, and color differences (CIEDE2000 [DE00]) were calculated. The distribution of variables was measured with the Kolmogorov Smirnov test, and one-way analysis of variance (ANOVA), Tukey HSD, Kruskal-Wallis, Mann-Whitney U tests were used in the analysis of quantitative independent data. Paired sample t-test was used in the analysis of dependent quantitative data (P < .05). RESULTS. The highest crown fracture resistance values were determined for the 3D printed composite resin (P < .05), and the lowest were observed in the bis-acryl composite resin (P < .05). Before and after thermal cycling, increase in mean hardness values were observed only in 3D printed composite resin (P < .05) and the highest ΔE00 value were observed in PMMA resin for all materials (P < .05). CONCLUSION. 3D printing and CAD-CAM milled interim materials showed better fracture strength. After the coffee thermal cycle, the highest surface hardness value was again found in 3D printing and CAD-CAM milled interim samples and the color change of the bis-acryl resin-based samples and the additive production technique was higher than the PMMA resin and CAD-CAM milled resin samples.

Marginal and internal fit of interim crowns fabricated with 3D printing and milling method (3D 프린팅 및 밀링 방법으로 제작된 임시 보철물 적합도 비교 분석)

  • Son, Young-Tak;Son, KeunBaDa;Lee, Kyu-Bok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.4
    • /
    • pp.254-261
    • /
    • 2020
  • Purpose: The purpose of this study was to assess the marginal and internal fit of interim crowns fabricated by two different manufacturing method (subtractive manufacturing technology and additive manufacturing technology). Materials and Methods: Forty study models were fabricated with plasters by making an impression of a master model of the maxillary right first molar for ceramic crown. On each study model, interim crowns (n = 40) were fabricated using three types of 3D printers (Meg-printer 2; Megagen, Zenith U; Dentis, and Zenith D; Dentis) and one type milling machine (imes-icore 450i; imes-icore GmbH). The internal of the interim crowns were filled with silicon and fitted to the study model. Internal scan data was obtained using an intraoral scanner. The fit of interim crowns were evaluated in the margin, absolute margin, axial, cusp, and occlusal area by using the superimposition of 3D scan data (Geomagic control X; 3D Systems). The Kruskal-wallis test, Mann-Whitney U test and Bonferroni correction method were used to compare the results among groups (α = 0.05). Results: There was no significant difference in the absolute marginal discrepancy of the temporary crown manufactured by three 3D printers and one milling machine (P = 0.812). There was a significant difference between the milling machine and the 3D printer in the axial and occlusal area (P < 0.001). The temporary crown with the milling machine showed smaller axial gap and higher occlusal gap than 3D printer. Conclusion: Since the marginal fit of the temporary crown produced by three types of 3D printers were all with in clinically acceptable range (< 120 ㎛), it can be sufficiently used for the fabrication of the temporary crown.

Study on the Elongation of Crown Root in Rice Plant (Oryza sativa L.) (수도관근의 신장에 관한 연구)

  • 정원일
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.3
    • /
    • pp.193-197
    • /
    • 1982
  • 1t is well known that the stem is filed with shoot units in the rice plant and each internode bears several crown roots. But it has not yet been ascertained that what controls the differential elongation of the crown roots in the same internode. Thereupon, author had been carried out this experiment to ascertain what controls the elongation of the crown roots in the same internode, especially on the conception of sink-source by leaf-cutting method. Generally, one shoot unit has two important sinks: one axillary bud (tiller) and several crown roots. When we removed the axillary bud, namely shoot unit has one sink: several crown roots, the crown roots formed near the midvein (source) were longer than the crown roots born near the axillary bud. And when the shoot unit has two sinks: one axillary bud and several crown roots, the other way, the crown roots formed at the prophyll unit of the tiller were longest, and the crown roots formed near the midvein were shortest and the crown roots born the near the tiller showed interim length. Juding from the present results, we can suppose that, when shoot unit has two sinks, axillary bud is superior sink than the crown roots. So that axillary bud grows faster than crown roots and tiller becomes a new source. Therefore the crown roots which formed at the new source and the crown roots born the near the new source are longer than others.

  • PDF

Full mouth rehabilitation of an asthma patient with severe tooth wear and occlusion disharmony (심한 마모 및 교합 부조화를 가진 천식 환자의 전악 수복 증례)

  • Jo, Yu-Jin
    • Journal of Korean society of Dental Hygiene
    • /
    • v.22 no.4
    • /
    • pp.225-230
    • /
    • 2022
  • Objectives: Patients with excessive tooth wear should first be diagnosed for the etiology of the tooth wear. Causes of tooth wear include bruxism, clenching, and taking medications for systemic diseases. After identifying the cause of tooth attrition, the final prosthesis should be restored with an appropriate vertical dimension. Methods: A 79-year-old man with worn out teeth desired a whole dental treatment. He was on medications for high blood pressure and asthma. The treatment proceeded with a consultation with a medical doctor. The medications for asthma evoked multiple teeth wear and a loss of the vertical dimension. After recovery of 3 mm of vertical dimension, 2 months of evaluation was followed by an interim prosthesis. Results: The increased vertical dimension caused no problem in function and esthetics, and the final restoration was performed with a full monolithic zirconia crown. Group function, adequate anterior guidance, and the occlusal plane were determined. Conclusions: After the final restoration, the patient was both esthetically and functionally satisfied, and a night guard splint was delivered to prevent prosthesis fracture. The patient was informed about the potential tooth wear associated with asthma drugs and educated to visit the clinic regularly.