DOI QR코드

DOI QR Code

Marginal and internal fit of interim crowns fabricated with 3D printing and milling method

3D 프린팅 및 밀링 방법으로 제작된 임시 보철물 적합도 비교 분석

  • Son, Young-Tak (Department of Dental Science, Graduate School, Kyungpook National University) ;
  • Son, KeunBaDa (Department of Dental Science, Graduate School, Kyungpook National University) ;
  • Lee, Kyu-Bok (Department of Dental Science, Graduate School, Kyungpook National University)
  • 손영탁 (경북대학교 대학원 치의과학과) ;
  • 손큰바다 (경북대학교 대학원 치의과학과) ;
  • 이규복 (경북대학교 대학원 치의과학과)
  • Received : 2020.10.05
  • Accepted : 2020.10.30
  • Published : 2020.12.31

Abstract

Purpose: The purpose of this study was to assess the marginal and internal fit of interim crowns fabricated by two different manufacturing method (subtractive manufacturing technology and additive manufacturing technology). Materials and Methods: Forty study models were fabricated with plasters by making an impression of a master model of the maxillary right first molar for ceramic crown. On each study model, interim crowns (n = 40) were fabricated using three types of 3D printers (Meg-printer 2; Megagen, Zenith U; Dentis, and Zenith D; Dentis) and one type milling machine (imes-icore 450i; imes-icore GmbH). The internal of the interim crowns were filled with silicon and fitted to the study model. Internal scan data was obtained using an intraoral scanner. The fit of interim crowns were evaluated in the margin, absolute margin, axial, cusp, and occlusal area by using the superimposition of 3D scan data (Geomagic control X; 3D Systems). The Kruskal-wallis test, Mann-Whitney U test and Bonferroni correction method were used to compare the results among groups (α = 0.05). Results: There was no significant difference in the absolute marginal discrepancy of the temporary crown manufactured by three 3D printers and one milling machine (P = 0.812). There was a significant difference between the milling machine and the 3D printer in the axial and occlusal area (P < 0.001). The temporary crown with the milling machine showed smaller axial gap and higher occlusal gap than 3D printer. Conclusion: Since the marginal fit of the temporary crown produced by three types of 3D printers were all with in clinically acceptable range (< 120 ㎛), it can be sufficiently used for the fabrication of the temporary crown.

목적: 본 연구의 목적은 서로 다른 제작 방법인 절삭 가공과 적층 가공 기술로 제작된 임시 보철물의 변연 및 내면 적합도를 평가하는 것이다. 연구 재료 및 방법: 상악 우측 제1대구치를 도재 수복을 위한 지대치 모형으로 준비하였다. 석고를 이용하여 총 40개의 실험 모형으로 복제하였고, 각각의 실험 모형을 구강 스캐너를 사용하여 스캔 데이터를 획득하였다. 3종의 3D 프린터(Meg-printer 2; Megagen, Zenith U; Dentis 그리고 Zenith D; Dentis) 및 1종의 밀링 장비(imes-icore 450i; imes-icore GmbH)를 사용하여 각 그룹당 10개의 임시 보철물을 제작하였다. 임시 보철물의 내면에 실리콘을 채우고 모형에 적합하여 중합이 완료된 후, 실리콘으로 내면이 복제되어 있는 실험 모형을 구강 스캐너를 사용하여 스캔 데이터를 획득하였다. 3차원 검사 소프트웨어(Geomagic control X; 3D Systems)를 이용하여 변연 간격, 절대 변연 간격, 섐퍼, 축벽, 교두, 교합 영역의 적합도를 분석하였다. 통계 분석은 제작 방법의 차이를 비교하기 위해서 Kruskal-Wallis test를 사용하여 검증하였으며, 사후 검정을 위해서 Mann-Whitney U-test and Bonferroni correction method을 사용하였다(α = 0.05). 결과: 3종의 3D 프린터와 1종의 밀링 장비에서 제작된 임시 보철물의 절대 변연 간격은 유의한 차이를 보이지 않았다(P = 0.812). 축벽, 교합 간격에서 밀링 장비와 3D 프린터 사이에 유의한 차이를 보였다(P < 0.001). 결론: 3종의 3D 프린터로 제작된 임시 보철물의 변연 적합도는 모두 임상적 허용 범위(< 120 ㎛)에 있었으므로, 적합도 측면에서 본다면 임시 보철물 제작을 위해서 충분히 사용될 수 있다.

Keywords

References

  1. Burns DR, Beck DA, Nelson SK. A review of selected dental literature on contemporary provisional fixed prosthodontic treatment: report of the committee on research in fixed prosthodontics of the academy of fixed prosthodontics. J Prosthet Dent 2003;90:474-97. https://doi.org/10.1016/S0022-3913(03)00259-2
  2. Lee SH. Esthetic considerations for porcelain fused to metal restorations. J Korean Dent Assoc 1982;20:127-30.
  3. Lee WS, Lee DH, Lee KB. Evaluation of internal fit of interim crown fabricated with CAD/CAM milling and 3D printing system. J Adv Prosthodont 2017;9:265-70. https://doi.org/10.4047/jap.2017.9.4.265
  4. McLean JW, von Fraunhofer JA. The estimation of cement film thickness by an in vivo technique. Br Dent J 1971;131:107-11. https://doi.org/10.1038/sj.bdj.4802708
  5. Syed M, Chopra R, Sachdev V. Allergic reactions to dental materials-a systematic review. J Clin Diagn Res 2015;9:ZE04-9.
  6. Arora A, Yadav A, Upadhyaya V, Jain P, Verma M. Comparison of marginal and internal adaptation of copings fabricated from three different fabrication techniques: An in vitro study. J Indian Prosthodont Soc 2018;18:102-7.
  7. Alharbi N, Osman R, Wismeijer D. Effects of build direction on the mechanical properties of 3Dprinted complete coverage interim dental restorations. J Prosthet Dent 2016;115:760-7. https://doi.org/10.1016/j.prosdent.2015.12.002
  8. Park ME, Shin SY. Three-dimensional comparative study on the accuracy and reproducibility of dental casts fabricated by 3D printers. J Prosthet Dent 2018;119:861.e1-861.e7. https://doi.org/10.1016/j.prosdent.2017.08.020
  9. Sun J, Zhang FQ. The application of rapid prototyping in prosthodontics. J Prosthodont 2012;21:641-4. https://doi.org/10.1111/j.1532-849X.2012.00888.x
  10. Torabi K, Farjood E, Hamedani S. Rapid prototyping technologies and their applications in prosthodontics, a review of literature. J Dent (Shiraz) 2015;16:1-9.
  11. Mai HN, Lee KB, Lee DH. Fit of interim crowns fabricated using photopolymer-jetting 3D printing. J Prosthet Dent 2017;118:208-15. https://doi.org/10.1016/j.prosdent.2016.10.030
  12. Stopp S, Wolff T, Irlinger F, Lueth T. A new method for printer calibration and contour accuracy manufacturing with 3D-print technology. Rapid Prototyping J 2008;14:167-72. https://doi.org/10.1108/13552540810878030
  13. Ebert J, Ozkol E, Zeichner A, Uibel K, Weiss O, Koops U, Telle R, Fischer H. Direct inkjet printing of dental prostheses made of zirconia. J Dent Res 2009;88:673-6. https://doi.org/10.1177/0022034509339988
  14. Kim SB, Kim NH, Kim JH, Moon HS. Evaluation of the fit of metal copings fabricated using stereolithography. J Prosthet Dent 2018;120:693-8. https://doi.org/10.1016/j.prosdent.2018.01.012
  15. Liu Y, Ye H, Wang Y, Zhao Y, Sun Y, Zhou Y. Threedimensional analysis of internal adaptations of crowns cast from resin patterns fabricated using computer-aided design/computer-assisted manufacturing technologies. Int J Prosthodont 2018;31:386-93. https://doi.org/10.11607/ijp.5678
  16. Rayyan MM, Aboushelib M, Sayed NM, Ibrahim A, Jimbo R. Comparison of interim restorations fabricated by CAD/CAM with those fabricated manually. J Prosthet Dent 2015;114:414-9. https://doi.org/10.1016/j.prosdent.2015.03.007
  17. Alharbi N, Alharbi S, Cuijpers VMJI, Osman RB, Wismeijer D. Three-dimensional evaluation of marginal and internal fit of 3D-printed interim restorations fabricated on different finish line designs. J Prosthodont Res 2018;62:218-26. https://doi.org/10.1016/j.jpor.2017.09.002
  18. Yu BY, Son KBD, Lee KB. Evaluation of intaglio surface trueness and margin quality of interim crowns in accordance with the build angle of stereolithography apparatus 3-dimensional printing. J Prosthet Dent 2020 Aug 14;S0022-3913(20)30385-1. doi:10.1016/j.prosdent.2020.04.028.[Epub ahead of print]
  19. Grajower R, Zuberi Y, Lewinstein I. Improving the fit of crowns with die spacers. J Prosthet Dent 1989;61:555-63. https://doi.org/10.1016/0022-3913(89)90275-8
  20. Puebla K, Arcaute K, Quintana R, Wicker RB. Effects of environmental conditions, aging, and build orientations on the mechanical properties of ASTM type I specimens manufactured via stereolithography. Rapid Prototyping J 2012;18:374-88. https://doi.org/10.1108/13552541211250373
  21. Zoellner A, Bragger U, Fellmann V, Gaengler P. Correlation between clinical scoring of secondary caries at crown margins and histologically assessed extent of the lesions. Int J Prosthodont 2000;13:453-9.
  22. Anadioti E, Aquilino SA, Gratton DG, Holloway JA, Denry I, Thomas GW, Qian F. 3D and 2D marginal fit of pressed and CAD/CAM lithium disilicate crowns made from digital and conventional impressions. J Prosthodont 2014;23:610-7. https://doi.org/10.1111/jopr.12180
  23. Lee HH, Lee DH, Lee KB. In vitro evaluation methods on adaptation of fixed dental prosthesis. J Dent Rehabil Appl Sci 2017;33:63-70. https://doi.org/10.14368/jdras.2017.33.2.63
  24. Son KBD, Lee SB, Kang SH, Park JS, Lee KB, Jeon MS, Yun BJ. A comparison study of marginal and internal fit assessment methods for fixed dental prostheses. J Clin Med 2019;8:785. https://doi.org/10.3390/jcm8060785
  25. Groten M, Axmann D, Probster L, Weber H. Determination of the minimum number of marginal gap measurements required for practical in-vitro testing. J Prosthet Dent 2000;83:40-9. https://doi.org/10.1016/S0022-3913(00)70087-4
  26. Kuhn K, Ostertag S, Ostertag M, Walter MH, Luthardt RG, Rudolph H. Comparison of an analog and digital quantitative and qualitative analysis for the fit of dental copings. Comput Biol Med 2015;57:32-41. https://doi.org/10.1016/j.compbiomed.2014.11.017
  27. Revilla-Leon M, Olea-Vielba M, Esteso-Saiz A, Matinez-KIemm I, Ozcan M. Marginal and internal gap of handmade, milled and 3D printed additive manufactured patterns for pressed lithium disilicate onlay restorations. Eur J Prosthodont Restor Dent 2018;26:31-8.
  28. Jang Y, Sim JY, Park JK, Kim WC, Kim HY, Kim JH. Accuracy of 3-unit fixed dental prostheses fabricated on 3D-printed casts. J Prosthet Dent 2020;123:135-42. https://doi.org/10.1016/j.prosdent.2018.11.004