• Title/Summary/Keyword: Interfacial reactions

Search Result 137, Processing Time 0.097 seconds

Influence of Gd0.1Ce0.9O2-δ Interlayer between La0.6Sr0.4Co0.2Fe0.8O3-δ Cathode and Sc-doped Zirconia Electrolyte on the Electrochemical Performance of Solid Oxide Fuel Cells (La0.6Sr0.4Co0.2Fe0.8O3-δ 공기극과 Sc이 도핑된 지르코니아 전해질 사이에 삽입한 Gd0.1Ce0.9O2-δ 중간층이 고체산화물 연료전지의 전기화학적 성능에 미치는 영향)

  • Lim, Jinhyuk;Jung, Hwa Young;Jung, Hun-Gi;Ji, Ho-Il;Lee, Jong-Ho
    • Ceramist
    • /
    • v.21 no.4
    • /
    • pp.378-387
    • /
    • 2018
  • The optimal fabrication conditions for $Gd_{0.1}Ce_{0.9}O_{2-{\delta}}$(GDC) buffer layer and $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ (LSCF) cathode on 1mol% $CeO_2-10mol%\;Sc_2O_3$ stabilized $ZrO_2$ (CeScSZ) electrolyte were investigated for application of IT-SOFCs. GDC buffer layer was used in order to prevent undesired chemical reactions between LSCF and CeScSZ. These experiments were carried out with $5{\times}5cm^2$ anode supported unit cells to investigate the tendencies of electrochemical performance, Microstructure development and interface reaction between LSCF/GDC/CeScSZ along with the variations of GDC buffer layer thickness, sintering temperatures of GDC and LSCF were checked, respectively. Electrochemical performance was analyzed by DC current-voltage measurement and AC impedance spectroscopy. Microstructure and interface reaction were investigated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Although the interfacial reaction between these materials could not be perfectly inhibited, We found that the cell, in which $6{\mu}m$ GDC interlayer sintered at $1200^{\circ}C$ and LSCF sintered at $1000^{\circ}C$ were applied, showed good interfacial adhesions and effective suppression of Sr, thereby resulting in fairly good performance with power density of $0.71W/cm^2$ at $800^{\circ}C$ and 0.7V.

Electrical and Structure Properties of W Ohmic Contacts to $\textrm{In}_{x}\textrm{Ga}_{1-x}\textrm{N}$ (W/InGaN Ohmic 접촉의 전기적 구조적 특성)

  • Kim, Han-Gi;Seong, Tae-Yeon
    • Korean Journal of Materials Research
    • /
    • v.9 no.10
    • /
    • pp.1012-1017
    • /
    • 1999
  • Low resistance ohmic contacts to the Si-doped $\textrm{In}_{0.17}\textrm{Ga}_{0.83}\textrm{N}$(~$\times10^{19}\textrm{cm}^{-3}$) were obtained using the W metallization schemes. Specific contact resistance decreased with increasing annealing temperature. The lowest resistance is obtained after a nitrogen ambient annealing at $950^{\circ}C$ for 90 s, which results in a specific contact resistance of $2.75\times10^{-8}\Omega\textrm{cm}^{-3}$. Interfacial reactions and surface are analyzed using x-ray diffraction and scanning electron microscopy (SEM). The X-ray diffraction results show that the reactions between the W film and the $\textrm{In}_{0.17}\textrm{Ga}_{0.83}\textrm{N}$ produce a $\beta$-$W_2N$ phase at the interface. The SEM result shows that the morphology of the contacts is stable up to a temperature as high as $850^{\circ}C$. Possible mechanisms are proposed to describe the annealing temperature dependence of the specific contact resistance.

  • PDF

Preparation of Al2O3 Thin Films by Atomic Layer Deposition Using Dimethylaluminum Isopropoxide and Water and Their Reaction Mechanisms

  • An, Ki-Seok;Cho, Won-Tae;Sung, Ki-Whan;Lee, Sun-Sook;Kim, Yun-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.11
    • /
    • pp.1659-1663
    • /
    • 2003
  • $Al_2O_3$ thin films were grown on H-terminated Si(001) substrates using dimethylaluminum isopropoxide [DMAl: $(CH_3)_2AlOCH(CH_3)_2$], as a new Al precursor, and water by atomic layer deposition (ALD). The selflimiting ALD process by alternate surface reactions of DMAI and $H_2O$ was confirmed from measured thicknesses of the aluminum oxide films as functions of the DMAI pulse time and the number of DMAI-$H_2O$ cycles. Under optimal reaction conditions, a growth rate of ~1.06 ${\AA}$ per ALD cycle was achieved at the substrate temperature of $150\;^{\circ}C$. From a mass spectrometric study of the DMAI-$D_2O$ ALD process, it was determined that the overall binary reaction for the deposition of $Al_2O_3\;[2\;(CH_3)_2AlOCH(CH_3)_2\;+\;3\;H_2O\;{\rightarrow}\;Al_2O_3\;+\;4\;CH_4\;+\;2\;HOCH(CH_3)_2]$can be separated into the following two half-reactions: where the asterisks designate the surface species. Growth of stoichiometric $Al_2O_3$ thin films with carbon incorporation less than 1.5 atomic % was confirmed by depth profiling Auger electron spectroscopy. Atomic force microscopy images show atomically flat and uniform surfaces. X-ray photoelectron spectroscopy and cross-sectional high resolution transmission electron microscopy of an $Al_2O_3$ film indicate that there is no distinguishable interfacial Si oxide layer except that a very thin layer of aluminum silicate may have been formed between the $Al_2O_3$ film and the Si substrate. C-V measurements of an $Al_2O_3$ film showed capacitance values comparable to previously reported values.

Effect of B2O3 Addition on Thermal, Structure, and Sealing Properties V2O5-P2O5-ZnO Glass (B2O3첨가에 따른 V2O5-P2O5-ZnO계 유리의 물성 및 구조와 봉착특성)

  • Sung, Aram;Kim, Yurian;Kim, Hyungsun
    • Korean Journal of Materials Research
    • /
    • v.26 no.10
    • /
    • pp.549-555
    • /
    • 2016
  • We have investigated a glass-forming region of $V_2O_5-P_2O_5-ZnO$ glass and the effects of the addition of modifier oxides ($B_2O_3$) to the glass systems as a sealing material to improve the adhesion between the glass frits and a soda lime substrate. Thermal properties and coefficient of thermal expansion were measured using a differential scanning calorimetry, a dilatometer and a hot stage microscopy. Structural changes and interfacial reactions between the glass substrate and the glass frit after sintering (at $400^{\circ}C$ for 1 h) were measured by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscope. The results showed that the adhesion strength increases as the content of $B_2O_3$ at 5 mol% increases because of changes in the structural properties. It seems that the glass structures change with $B_2O_3$, and the $Si^{4+}$ ions from the substrate are diffused to the sealing glass. From these results, we could understand the mechanism of strengthening of the adhesion of soda lime silica substrate by ion-diffusion from the substrate to the glass.

The Effect of Abnormal Intermetallic Compounds Growth at Component on Board Level Mechanical Reliability (컴포넌트에서의 비정상적인 금속간화합물 성장이 보드 레벨 기계적 신뢰성에 미치는 영향)

  • Choi, Jae-Hoon;Ham, Hyon-Jeong;Hwang, Jae-Seon;Kim, Yong-Hyun;Lee, Dong-Chun;Moon, Jeom-Ju
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.2
    • /
    • pp.47-54
    • /
    • 2008
  • In this paper, we studied how and why did abnormal IMC growth at component affect on board level mechanical reliability. First, interfacial reactions between Sn2.5Ag0.5Cu solder and electrolytic Ni/Au UBM of component side were investigated with reflow times and thermal aging time. Also, to compare mechanical reliability of component level, shear energy was evaluated using the ball shear test conducted with variation of shear tip speed. Finally, to evaluate mechanical reliability of board level, we surface-mounted component fabricated with each condition on PCB side. After conducting of 3 point bending test and impact test, we confirmed solder joint crack mode using cross-sectioning and dye & pry penetration method.

  • PDF

Numerical Simulation on the Spreading and Heat Transfer of Ex-Vessel Core Melt in a Channel (전산해석을 이용한 원자로 노심 용융물의 노외 거동 및 열전달 특성 분석)

  • Ye, In-Soo;Ryu, Chang-Kook;Ha, Kwang-Soon;Song, Jin-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.4
    • /
    • pp.425-429
    • /
    • 2011
  • In the unlikely of nuclear reactor meltdown, the leaked core melt or corium must be contained in a device called core-catcher so that the corium can be cooled and stabilized. The ex-vessel behavior of corium involves complex physical and chemical mechanisms of flow propagation, heat transfer, and reactions with sacrificial substrates. In this study, the detailed characteristics of corium flow and heat transfer were investigated by using a commercial CFD code for VULCANO VE-U7 test reported in the literature. The volume-of-fluid (VOF) model was used to predict the interfacial surface formation of corium and the surrounding air, and the discrete ordinate model was adopted to calculate radiation between corium and the surroundings. It was found that cooling via radiation through the top surface of corium had a dominant effect on the temperature and viscosity profiles at the front of the corium flow.

Interfacial Reactions of Sn Solder with Variations of Under-Bump-Metallurgy and Reflow Time (Under Bump Metallurgy의 종류와 리플로우 시간에 따른 Sn 솔더 계면반응)

  • Park, Sun-Hee;Oh, Tae-Sung;Englemann, G.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.3
    • /
    • pp.43-49
    • /
    • 2007
  • Thickness of intermetallic compounds and consumption rates of under bump metallurgies (UBMs) were investigated in wafer-level solder bumping with variations of UBM materials and reflow times. In the case of Cu UBM, $0.6\;{\mu}m-thick$ intermetallic compound layer was formed before reflow of Sn solder, and the average thickness of the intermetallic compound layer increased to $4\;{\mu}m$ by reflowing at $250^{\circ}C$ for 450 sec. On the contrary, the intermetallic layer had a thickness of $0.2\;{\mu}m$ on Ni UBM before reflow and it grew to $1.7\;{\mu}m$ thickness with reflowing for 450 sec. While the consumption rates of Cu UBM were 100nm/sec fur 15-sec reflow and 4.50-sec for 450-sec reflow, those of Ni UBM decreased to 28.7 nm/sec for 15-sec reflow and 1.82 nm/sec for 450-sec reflow.

  • PDF

A study on the formation of cobalt silicide thin films in Co/Si systems with different capping layers (Co/Si 시스템에서 capping layer에 따른 코발트 실리사이드 박막의 형성에 관한 연구)

  • ;;;;;;;Kazuyuki Fujihara
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.4
    • /
    • pp.335-340
    • /
    • 2000
  • We investigated the role of the capping layers in the formation of the cobalt silicide in Co/Si systems with TiN and Ti capping layers and without capping layers. The Co/Si interfacial reactions and the phase transformations by the rapid thermal annealing (RTA) processes were observed by sheet resistance measurements, XRD, SIMS and TEM analyses for the clean silicon substrate as well as for the chemically oxidized silicon substrate by $H_2SO_4$. We observed the retardation of the cobalt disilicide formation in the Co/Si system with Ti capping layers. In the case of Co/$SiO_2$/Si system, cobalt silicide was formed by the Co/Si reaction due to with the dissociation of the oxide layer by the Ti capping layers.

  • PDF

Deposition of $MgB_2$ Thin Films on Alumina-Buffered Si Substrates by using Hybrid Physical-Chemical Vapor Deposition Method (혼성물리화학기상 증착법에 의한 알루미나 완충층을 가진 실리콘 기판 위의 $MgB_2$ 박막제조에 대한 연구)

  • Lee, T.G.;Park, S.W.;Seong, W.K.;Huh, J.Y.;Jung, S.G.;Lee, B.K.;An, K.S.;Kang, W.N.
    • Progress in Superconductivity
    • /
    • v.9 no.2
    • /
    • pp.177-182
    • /
    • 2008
  • [ $MgB_2$ ] thin films were fabricated using hybrid physical-chemical vapor deposition (HPCVD) method on silicon substrates with buffers of alumina grown by using atomic layer deposition method. The growth war in a range of temperatures $500\;{\sim}\;600^{\circ}C$ and under the reactor pressures of $25\;{\sim}\;50\;Torr$. There are some interfacial reactions in the as-grown films with impurities of mostly $Mg_2Si$, $MgAl_2O_4$, and other phases. The $T_c$'s of $MgB_2$ films were observed to be as high as 39 K, but the transition widths were increased with growth temperatures. The magnetization was measured as a function of temperature down to the temperature of 5 K, but the complete Meissner effect was not observed, which shows that the granular nature of weak links is prevailing. The formation of mostly $Mg_2Si$ impurity in HPCVD process is discussed, considering the diffusion and reaction of Mg vapor with silicon substrates.

  • PDF

Formation of SiC Particle Reinforced Al Metal Matrix Composites by Spray Forming Process(I. Microstructure) (분사성형법에 의한 SiC입자강화 알루미늄 복합재료의 제조 I. 미세조직에 대한 고찰)

  • Park, Jong-Sung;Kim, Myung-Ho;Bae, Cha-Hurn
    • Journal of Korea Foundry Society
    • /
    • v.13 no.4
    • /
    • pp.369-381
    • /
    • 1993
  • Aluminum alloy(AC8A) matrix composites reinforced with SiC particles(10% in vol.) were fabricated by Centrifugal Spray Deposition(CSD) process. The microstructures were investigated in order to evaluate both the mixing mode between aluminum matrix and SiC particles, and the effect of SiC particles on the cooling behaviours of droplets during flight and preforms deposited. A non-continuum mathematical calculation was performed to explain and to quantify the evolution of microstructures in the droplets and preforms deposited. Conclusions obtained are as follows; 1. The powders produced by CSD process showed, in general, ligament type, and more than 60% of the powders produced were about 300 to 850 um in size. 2. AC8A droplets solidified during flight showed fine dendritic structure, but AC8A droplets mixed with SiC particles showed fine equiaxed grain structure, and eutectic silicon were formed to crystallize granularly between fine aluminum grains. 3. SiC particles seem to act as a nucleation sites for pro-eutectic silicon during solidification of AC8A alloy. 4. The microstructure of composite powders formed by CSD process showed particle embedded type, and resulted in dispersed type microstructure in preforms deposited. 5. The pro-eutectic silicon crystallized granularly between fine aluminum grains seem to prohibit grains from growth during spray deposition process. 6. The interfacial reactions between aluminum matrix and SiC particles were not observed from the deposit performs and the solidified droplets. 7. The continuum model seem to be useful in connecting the processing parameters with the resultant microstructures. From these results, it was concluded that the fabrication of aluminum matrix composites reinforced homogeneously with SiC particles was possible.

  • PDF