• Title/Summary/Keyword: Interfacial layer

Search Result 676, Processing Time 0.034 seconds

Elastic-Plastic Stress Distributions Behavior in the Interface of SiC/Ti-15-3 MMC under Transverse Loading(II) (횡하중을 받는 SiC/Ti-15-3 MMC 복합재 계면영역에서의 탄소성 응력장분포거동(II))

  • Kang Ji-Woong;Kwon Oh-Heon
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.2 s.70
    • /
    • pp.26-31
    • /
    • 2005
  • The strong continuous fiber reinforced metal matrix composites (MMCs) are recently used in aerospace and transportation applications as an advanced material due to its high strength and light weight. Unidirectional fiber-metal matrix composites have superior mechanical properties along the longitudinal direction. However, the applicability of continuous fiber reinforced MMCs is somewhat limited due to their relatively poor transverse properties. Therefore, the transverse properties of MMCs are significantly influenced by the properties of the fiber/matrix interface. In order to be able to utilize these MMCs effectively and with safety, it must be determined their elastic plastic behaviors at the interface. In this study, the interfacial stress states of transversely loaded unidirectional fiber reinforced metal matrix composites investigated by using elastic-plastic finite element analysis. Different fiber volume fractions $(5-60\%)$ were studied numerically. The interlace was treated as three thin layer (with different properties) with a finite thickness between the fiber and the matrix. The fiber is modeled as transversely isotropic linear-elastic, and the matrix as isotropic elastic-plastic material. Using proposed model, the effects of the interface region and fiber arrangement in MMCs on the distributions of stress and strain are evaluated. The stress distributions of a thin multi layer interface have much less changes compared with conventional perfect interface. The analyses were based on a two-dimensional generalized plane strain model of a cross-section of an unidirectional composite by the ANSYS finite element analysis code.

A Basic Study on the Stress Field in the Electrode Interface of the Planar SOFC Single Cell (평판형 SOFC 단전지 전극계면에서 발생되는 응력장에 관한 기초적 연구)

  • Park, Chul Jun;Kwon, Oh Heon;Kang, Ji Woong
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.5
    • /
    • pp.5-9
    • /
    • 2013
  • Recently, eco-friendly sources of energy by fuel cells that use hydrogen as an energy source has emerged as the next generation of energy to solve the problem of environmental issues and exhaustion of energy. A solid oxide fuel cell(SOFC) classified based on the type of ion transfer mediator electrolyte has actively being researched. However, the reliability according to the thermal cycle is low during the operation of the fuel cell, and deformation problem comes from the difference in thermal expansion coefficient between the electrode material, the components made of ceramic material is also brittle, which means disadvantages in terms of the strength. Therefore, in this study, considering the states of the manufacturing and operating of SOFC single cells, the stress analyses in the each of the interfacial layer between the anode, electrolyte and the cathode were performed to get the basic data for reliability assessment of SOFC. The obtained results show that von Mises stress according to the thickness direction on operating state occurred maximum stress value in the electrolyte layer. And also the stresses inside the active area on a distance of 1 ${\mu}m$ from the electrode interface were estimated. Futhermore the evaluation was done for the variation of the stress according to the stage of the operation divided into three stages of manufacturing, stack, and operating.

Dependence of LaAlO3/SrTiO3 Interfacial Conductivity on the Thickness of LaAlO3 Layer Investigated by Current-voltage Characteristics (LaAlO3 두께에 따른 LaAlO3/SrTiO3 계면에서의 전류-전압 특성을 이용한 전도성 변화 연구)

  • Moon, Seon-Young;Baek, Seung-Hyub;Kang, Chong-Yun;Choi, Ji-Won;Choi, Heon-Jin;Kim, Jin-Sang;Jang, Ho-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.8
    • /
    • pp.616-619
    • /
    • 2012
  • Oxides possess several interesting properties, such as ferroelectricity, magnetism, superconductivity, and multiferroic behavior, which can effectively be used oxide electronics based on epitaxially grown heterostructures. The microscopic properties of oxide interfaces may have a strong impact on the electrical transport properties of these heterostructures. It was recently demonstrated that high electrical conductivity and mobility can be achieved in the system of an ultrathin $LaAlO_3$ film deposited on a $TiO_2$-terminated $SrTiO_3$ substrate, which was a remarkable result because the conducting layer was at the interface between two insulators. In this study, we observe that the current-voltage characteristics exhibit $LaAlO_3$ thickness dependence of electrical conductivity in $TiO_2$-terminated $SrTiO_3$. We find that the $LaAlO_3$ layers with a thickness of up 3 unit cells, result in highly insulating interfaces, whereas those with thickness of 4 unit cells and above result in conducting interfaces.

Thin Film (La0.7Sr0.3)0.95MnO3-δ Fabricated by Pulsed Laser Deposition and Its Application as a Solid Oxide Fuel Cell Cathode for Low-Temperature Operation

  • Noh, Ho-Sung;Son, Ji-Won;Lee, Heon;Kim, Hae-Ryoung;Lee, Jong-Ho;Lee, Hae-Weon
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.1
    • /
    • pp.75-81
    • /
    • 2010
  • The feasibility of using the thin film technology in utilizing lanthanum strontium manganite (LSM) for a solid oxide fuel cell (SOFC) cathode in a low-temperature regime is investigated in this study. Thin film LSM cathodes were fabricated using pulsed laser deposition (PLD) on anode-supported SOFCs with yttria-stabilized zirconia (YSZ) electrolytes. Although cells with a 1 ${\mu}m$-thick LSM cathode showed poor low-temperature cell performance compared to that of a cell with a bulk-processed cathode due to the lack of a triple-phase boundary length, the cell with 200 nm-thick gadolinia-doped ceria (GDC) inserted between the LSM and YSZ showed enhanced performance and more stable operation characteristics in a comparison of a cell without a GDC layer. We postulate that the GDC layer likely improved the cathode adhesion, therefore contributing to the improvement of the cell performance instead of serving as an interfacial reaction buffer.

A performance study of organic solar cells by electrode and interfacial modification (전극과 계면간의 개질에 의한 유기태양전지의 성능 연구)

  • Kang, Nam-Su;Eo, Yong-Seok;Ju, Byeong-Kwon;Yu, Jae-Woong;Chin, Byung-Doo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.67-67
    • /
    • 2008
  • Application of organic materials with low cost, easy fabrication and advantages of flexible device are increasing attention by research work. Recently, one of them, organic solar cells were rapidly increased efficiency with regioregular poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyricacidmethylester (PCBM) used typical material. To increased efficiency of organic solar cell has tried control of domain of PCBM and crystallite of P3HT by thermal annealing and solvent vapor annealing. [4-6] In those annealing effects, be made inefficiently efficiency, which is increased fill factor (FF), and current density by phase-separated morphology with blended P3HT and PCBM. In addition, increased conductivity by modified hole transfer layer (HTL) such as Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS), increased both optical and conducting effect by titanium oxide (TiOx), and changed cathode material for control work function were increased efficiency of Organic solar cell. In this study, we had described effect of organic photovoltaics by conductivity of interlayer such as PEDOT:PSS and TCO (Transparent conducting oxide) such as ITO, which is used P3HT and PCBM. And, we have measured with exactly defined shadow mask to study effect of solar cell efficiency according to conductivity of hole transfer layer.

  • PDF

Improvement of the carrier transport property and interfacial behavior in InGaAs quantum well Metal-Oxide-Semiconductor Field-Effect-Transistors with sulfur passivation (황화 암모늄을 이용한 Al2O3/HfO2 다층 게이트 절연막 트랜지스터 전기적 및 계면적 특성 향상 연구)

  • Kim, Jun-Gyu;Kim, Dae-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.266-269
    • /
    • 2020
  • In this study, we investigated the effect of a sulfur passivation (S-passivation) process step on the electrical properties of surface-channel In0.7Ga0.3As quantum-well (QW) metal-oxide-semiconductor field-effect transistors (MOSFETs) with S/D regrowth contacts. We fabricated long-channel In0.7Ga0.3As QW MOSFETs with and without (NH4)2S treatment and then deposited 1/4 nm of Al2O3/HfO2 through atomic layer deposition. The devices with S-passivation exhibited lower values of subthreshold swing (74 mV/decade) and drain-induced barrier lowering (19 mV/V) than the devices without S-passivation. A conductance method was applied, and a low value of interface trap density Dit (2.83×1012 cm-2eV-1) was obtained for the devices with S-passivation. Based on these results, interface traps between InGaAs and high-κ are other defect sources that need to be considered in future studies to improve III-V microsensor sensing platforms.

Electrochemical Performance of the Solid Oxide Fuel Cell with Different Thicknesses of BSCF-based Cathode (BSCF계 혼합전도성 공기극의 두께에 따른 고체산화물 연료전지의 전기화학적 특성)

  • Jeong, Jaewon;Yoo, Chung-Yul;Joo, Jong Hoon;Yu, Ji Haeng
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.2
    • /
    • pp.186-192
    • /
    • 2013
  • In order to reduce the costs and to improve the durability of solid oxide fuel cell (SOFC), the operating temperature should be decreased while the power density is maintained as much as possible. However, lowering the operating temperature increases the cathode interfacial polarization resistances dramatically, limiting the performance of low-temperature SOFC at especially purely electronic conducting cathode. To improve cathode performance at low temperature, the number of reaction sites for the oxygen reduction should be increased by using a mixed ionic and electronic conducting (MIEC) material. In this study, anode-supported fuel cells with two different thicknesses of the MIEC cathode were fabricated and tested at various operating temperatures. The anode supported cell with $32.5{\mu}m$-thick BSCFZn-LSCF cathode layer showed much lower polarization resistance than that with $3.2{\mu}m$ thick cahtode and higher power density especially at low temperature. The effects of cathode layer thickness on the electrochemical performance are discussed with analysis of impedance spectra.

Effect of Negative Oxygen Ions Accelerated by Self-bias on Amorphous InGaZnO Thin Film Transistors

  • Kim, Du-Hyeon;Yun, Su-Bok;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.466-468
    • /
    • 2012
  • Amorphous InGaZnO (${\alpha}$-IGZO) thin-film transistors (TFTs) are are very promising due to their potential use in thin film electronics and display drivers [1]. However, the stability of AOS-TFTs under the various stresses has been issued for the practical AOSs applications [2]. Up to now, many researchers have studied to understand the sub-gap density of states (DOS) as the root cause of instability [3]. Nomura et al. reported that these deep defects are located in the surface layer of the ${\alpha}$-IGZO channel [4]. Also, Kim et al. reported that the interfacial traps can be affected by different RF-power during RF magnetron sputtering process [5]. It is well known that these trap states can influence on the performances and stabilities of ${\alpha}$-IGZO TFTs. Nevertheless, it has not been reported how these defect states are created during conventional RF magnetron sputtering. In general, during conventional RF magnetron sputtering process, negative oxygen ions (NOI) can be generated by electron attachment in oxygen atom near target surface and accelerated up to few hundreds eV by self-bias of RF magnetron sputter; the high energy bombardment of NOIs generates bulk defects in oxide thin films [6-10] and can change the defect states of ${\alpha}$-IGZO thin film. In this paper, we have confirmed that the NOIs accelerated by the self-bias were one of the dominant causes of instability in ${\alpha}$-IGZO TFTs when the channel layer was deposited by conventional RF magnetron sputtering system. Finally, we will introduce our novel technology named as Magnetic Field Shielded Sputtering (MFSS) process [9-10] to eliminate the NOI bombardment effects and present how much to be improved the instability of ${\alpha}$-IGZO TFTs by this new deposition method.

  • PDF

Magnetoresistance of ${[Co/Fe/Cu]}_20$ Multilayers (${[Co/Fe/Cu]}_20$ 다층박막의 자기저항 특성)

  • 이장로
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.6
    • /
    • pp.411-416
    • /
    • 1996
  • We have studied the effect of a spin-dependence interface electron scattering on the giant magnetoresistance by adding a Fe magnetic material to the Co/Cu interfaces. The $Fe(50\;{\AA})/[Co(17\;{\AA})/Fe(t\;{\AA})/Cu(24\;{\AA})]_{20}$ multilayers are deposited on the Corning glass 2948 and 7059 substrates in a dc magnetron sputtering system. The magnetoresistance ratio is 22 % in the only Co/Cu multilayer, while it is increased to 26 % with inserted ultra thin Fe interface layer and reduced with increasing thickness of the Fe interface layer. It was investigated to the dependence of the magnetoresistance behaviors on annealing temperature. The magnetic properties of the multilayers were measured by vibrating sample magnetometer. Also, the structures and the surface roughness of samples were characterized by X-ray diffraction and atomic force microscope, respectively. The magnetoresistance ratio was increased to annealing temperature $300^{\circ}C$, but reduced at the temperature higher than $300^{\circ}C$ due to the interfacial diffuse.

  • PDF

A Study on SiC/SiC and SiC/Mild steel brazing by the Ag-Ti based alloys (Ag-Ti계 합금을 사용한 SiC/SiC 및 SiC/연강 브레이징에 대한 연구)

  • 이형근;이재영
    • Journal of Welding and Joining
    • /
    • v.14 no.4
    • /
    • pp.99-108
    • /
    • 1996
  • The microstructure and bond strength are examined on the SiC/SiC and SiC/mild steel joints brazed by the Ag-Ti based alloys with different Ti contents. In the SiC/SiC brazed joints, the thickness of the reaction layers at the bond interface and the Ti particles in the brazing alloy matrices increase with Ti contents. When Ti is added up to 9 at% in the brazing alloy. $Ti_3SiC_2$ phase in addition to TiC and $Ti_5Si_3$ phase is newly created at the bond interface and TiAg phase is produced from peritectic reaction in the brazing alloy matrix. In the SiC/mild steel joints brazed with different Ti contents, the microstructure at the bond interface and in the brazing alloy matrix near SiC varies similarly to the case of SiC/SiC brazed joints. But, in the brazing alloy matrix near the mild steel, Fe-Ti intermetallic compounds are produced and increased with Ti contents. The bond strengths of the SiC/SiC and SiC/mild steel brazed joints are independent on Ti contents in the brazing alloy. There are no large differences of the bond strength between SiC/SiC and SiC/mild steel brazed joints. In the SiC/mild steel brazed joints, Fe dissolved from the mild steel does not affect on the bond strength of the joints. Thermal contraction of the mild steel has nearly no effects on the bond strength due to the wide brazing gap of specimens used in the four-point bend test. The brazed joints has the average bond strength of about 200 MPa independently on Ti contents, Fe dissolution and joint type. Fracture in four-point bend test initiates at the interface between SiC and TiC reaction layer and propagates through SiC bulk. The adhesive strength between SiC and TiC reaction layer seems to mainly control the bond strength of the brazed joints.

  • PDF