• 제목/요약/키워드: Interfacial area

검색결과 196건 처리시간 0.031초

IRRADIATION PERFORMANCE OF U-Mo MONOLITHIC FUEL

  • Meyer, M.K.;Gan, J.;Jue, J.F.;Keiser, D.D.;Perez, E.;Robinson, A.;Wachs, D.M.;Woolstenhulme, N.;Hofman, G.L.;Kim, Y.S.
    • Nuclear Engineering and Technology
    • /
    • 제46권2호
    • /
    • pp.169-182
    • /
    • 2014
  • High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. U-Mo alloys represent the best known tradeoff in these properties. Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.

Evaluating the Catalytic Effects of Carbon Materials on the Photocatalytic Reduction and Oxidation Reactions of TiO2

  • Khan, Gulzar;Kim, Young Kwang;Choi, Sung Kyu;Han, Dong Suk;Abdel-Wahab, Ahmed;Park, Hyunwoong
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권4호
    • /
    • pp.1137-1144
    • /
    • 2013
  • $TiO_2$ composites with seven different carbon materials (activated carbons, graphite, carbon fibers, single-walled carbon nanotubes, multi-walled carbon nanotubes, graphene oxides, and reduced graphene oxides) that are virgin or treated with nitric acid are prepared through an evaporation method. The photocatalytic activities of the as-prepared samples are evaluated in terms of $H_2$ production from aqueous methanol solution (photo-catalytic reduction: PCR) and degradation of aqueous pollutants (phenol, methylene blue, and rhodamine B) (photocatalytic oxidation: PCO) under AM 1.5-light irradiation. Despite varying effects depending on the kinds of carbon materials and their surface treatment, composites typically show enhanced PCR activity with maximum 50 times higher $H_2$ production as compared to bare $TiO_2$. Conversely, the carbon-induced synergy effects on PCO activities are insignificant for all three substrates. Colorimetric quantification of hydroxyl radicals supports the absence of carbon effects. However, platinum deposition on the binary composites displays the enhanced effect on both PCR and PCO reactions. These differing effects of carbon materials on PCR and PCO reactions of $TiO_2$ are discussed in terms of physicochemical properties of carbon materials, coupling states of $TiO_2$/carbon composites, interfacial charge transfers. Various surface characterizations of composites (UV-Vis diffuse reflectance, SEM, FTIR, surface area, electrical conductivity, and photoluminescence) are performed to gain insight on their photocatalytic redox behaviors.

고압 WGS 반응을 위한 Cu-ZnO/Al2O3 촉매상에서 기-액 계면 촉매 반응 특성 연구 (Catalytic Activity Tests in Gas-Liquid Interface over Cu-ZnO/Al2O3 Catalyst for High Pressure Water-Gas-Shift Reaction)

  • 김세훈;박노국;이태진
    • 한국수소및신에너지학회논문집
    • /
    • 제22권6호
    • /
    • pp.905-912
    • /
    • 2011
  • In this study, the novel concept catalytic reactor was designed for water-gas shift reaction (WGS) under high pressure. The novel concept catalytic reactor was composed of an autoclave, the catalyst, and liquid water. Cu-ZnO/$Al_2O_3$ as the low temperature shift catalyst was used for WGS reaction. WGS in the novel concept catalytic reactor was carried out at the ranges of 150~$250^{\circ}C$ and 30~50 atm. The liquid water was filled at the bottom of the autoclave catalytic reactor and the catalyst of pellet type was located at the gas-liquid water interface. It was concluded that WGS reaction occurred over the surface of catalysts partially wetted with liquid water. The conversion of CO for WGS was also controlled with changing content of Cu and ZnO used as the catalytic active components. Meanwhile, the catalyst of honey comb type coated with Cu-ZnO/$Al_2O_3$ was used in order to increase the contact area between wet-surface of catalyst and the reactants of gas phase. It was confirmed from these experiments that $H_2$/CO ratio of the simulated coal gas increased from 0.5 to 0.8 by WGS at gas-liquid water interface over the wet surface of honey comb type catalyst at $250^{\circ}C$ and 50 atm.

분리막 접촉기의 기술 동향 (Thends in Membrane Contactors)

  • 이규호;김민정;서봉국;박유인;이기섭
    • 멤브레인
    • /
    • 제15권3호
    • /
    • pp.187-197
    • /
    • 2005
  • 분리막 접촉기는 액체-액체, 기체-액체와 같이 두 개의 다른 상 사이에 막이 상계면 혹은 상 장벽의 역할을 수행하여 두 상간의 물질전달이 이루어지게 하는 장치이다 분리막 접촉기는 기체-액체 또는 액체-액체 간에 접촉을 통해 안정된 계면을 형성시켜줌으로써 인위적으로 물질전달속도 조절이 가능할 뿐만 아니라 접촉면적이 크고 기존 분리정제 공정의 운전 시 발생할 수 있는 유화(emulsion), 범람(flooding), 편류(channeling), 기포생성(foaming), 그리고 부하(unloading) 등과 같은 기술적 문제점을 보완할 수 있어 이에 대한 연구가 활발히 진행되고 있다. 이에 본 논문에서는 분리막 접촉기가 이용되는 공정과 분리막 접촉기에 사용되는 막의 제조방법, 국내외의 연구동향을 고찰하여 분리공정으로써의 분리막 접촉기에 관한 이해를 높이고자 한다.

Tungsten oxide interlayer for hole injection in inverted organic light-emitting devices

  • 김윤학;박순미;권순남;김정원
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.380-380
    • /
    • 2010
  • Currently, organic light-emitting diodes (OLEDs) have been proven of their readiness for commercialization in terms of lifetime and efficiency. In accordance with emerging new technologies, enhancement of light efficiency and extension of application fields are required. Particularly inverted structures, in which electron injection occurs at bottom and hole injection on top, show crucial advantages due to their easy integration with Si-based driving circuits for active matrix OLED as well as large open area for brighter illumination. In order to get better performance and process reliability, usually a proper buffer layer for carrier injection is needed. In inverted top emission OLED, the buffer layer should protect underlying organic materials against destructive particles during the electrode deposition, in addition to increasing their efficiency by reducing carrier injection barrier. For hole injection layers, there are several requirements for the buffer layer, such as high transparency, high work function, and reasonable electrical conductivity. As a buffer material, a few kinds of transition metal oxides for inverted OLED applications have been successfully utilized aiming at efficient hole injection properties. Among them, we chose 2 nm of $WO_3$ between NPB [N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine] and Au (or Al) films. The interfacial energy-level alignment and chemical reaction as a function of film coverage have been measured by using in-situ ultraviolet and X-ray photoelectron spectroscopy. It turned out that the $WO_3$ interlayer substantially reduces the hole injection barrier irrespective of the kind of electrode metals. It also avoids direct chemical interaction between NPB and metal atoms. This observation clearly validates the use of $WO_3$ interlayer as hole injection for inverted OLED applications.

  • PDF

CMP 패드 컨디셔너의 제조공법에 따른 패드 컨디셔닝 특성 (The properties of pad conditioning according to manufacturing methods of CMP pad conditioner)

  • 강승구;송민석;지원호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.362-365
    • /
    • 2005
  • Currently Chemical Mechanical Planarization (CMP) has become an essential step in the overall semiconductor wafer fabrication technology. Especially the CMP pad conditioner, one of the diamond tools, is required to have strong diamond retention. Strong cohesion between diamond grits and metal matrix prevents macro scratch on the wafer. If diamond retention is weak, the diamond will be pulled out of metal matrix. The pulled diamond grits are causative of macro scratch on wafer during CMP process. Firstly, some results will be reported of cohesion between diamond grits and metal matrix on the diamond tools prepared by three different manufacturing methods. A measuring instrument with sharp cemented carbide connected with a push-pull gauge was manufactured to measure the cohesion between diamond grits and metal matrix. The retention force of brazed diamond tool was stronger than the others. The retention force was also increased in proportion to the contact area of diamond grits and metal matrix. The brazed diamond tool has a strong chemical combination of the interlayer composed of chrome in metal matrix and carbon which enhance the interfacial cohesion strength between diamond grits and metal matrix. Secondly, we measured real-time data of the coefficient of friction and the pad wear rate by using CMP tester (CETR, CP-4). CMP pad conditioner samples were manufactured by brazed, electro-plated and sintered methods. The coefficient of friction and the pad wear rate were shown differently according to the arranged diamond patterns. Consequently, the coefficient of friction is increased according as the space between diamonds is increased or the concentration of diamonds is decreased. The pad wear rate is increased according as the degree of diamond protrusion is increased.

  • PDF

Surface alterations following instrumentation with a nylon or metal brush evaluated with confocal microscopy

  • Kim, Young-Sung;Park, Jun-Beom;Ko, Youngkyung
    • Journal of Periodontal and Implant Science
    • /
    • 제49권5호
    • /
    • pp.310-318
    • /
    • 2019
  • Purpose: Surface alterations of titanium discs following instrumentation with either a nylon brush or a metal brush were evaluated. Methods: A total of 27 titanium discs with 3 surface types (9 discs for each type), including machined (M) surfaces, sandblasted and acid-etched (SA) surfaces, and surfaces treated by resorbable blast media (RBM), were used. Three discs were instrumented with a nylon brush, another 3 discs were instrumented with a metal brush, and the remaining 3 discs were used as controls for each surface type. Surface properties including the arithmetic mean value of a linear profile (Ra), maximum height of a linear profile (Rz), skewness of the assessed linear profile (Rsk), arithmetic mean height of a surface (Sa), maximum height of a surface (Sz), developed interfacial area ratio (Sdr), skewness of a surface profile (Ssk), and kurtosis of a surface profile (Sku) were measured using confocal microscopy. Results: Instrumentation with the nylon brush increased the Ra, Sa, and Sdr of the M surfaces. On the SA surfaces, Ra, Sa and Sdr decreased after nylon brush use. Meanwhile, the roughness of the RBM surface was not affected by the nylon brush. The use of the metal brush also increased the Ra, Sa, and Sdr of the M surface; however, the increase in Sdr was not statistically significant (P=0.119). The decreases in the Rz, Sz, Ra, Sa, and Sdr of the SA surfaces were remarkable. On the RBM surfaces, the use of the metal brush did not cause changes in Ra and Sa, whereas Rz, Sz, and Sdr were reduced. Conclusions: Titanium surfaces were altered when instrumented either with a nylon brush or a metal brush. Hence, it is recommended that nylon or metal brushes be used with caution in order to avoid damaging the implant fixture/abutment surface.

직접블렌딩 방법을 이용한 SBR-나일론 접착 연구 (Adhesion Study of SBR-Nylon by Direct Blending Technique)

  • 정경호;강도균;윤태호;강신영
    • 접착 및 계면
    • /
    • 제1권1호
    • /
    • pp.30-37
    • /
    • 2000
  • 고무-섬유로 이루어진 고무복합체 제조공정을 단순화하기 위한 직접블렌딩 기술을 본 연구에서 제시하였다. 직접블렌딩 방법은 레소시놀, 헥사메틸테트라민, NaOH로 이루어진 결합체를 고무혼합물 배합공정에 직접 혼합하여 보강섬율의 접착제 처리공정을 생략할 수 있는 방법이다. 이러한 직접블렌딩 메커니즘을 규명하기 위해 결합체를 직접 고무혼합물에 블렌딩한 경우와(Case I) 결합체를 수용액 상에서 반응시켜 경화물을 얻은 후 이를 분쇄하여 고무혼합물에 배합하는 경우를(Case II) 비교하였다. 모폴로지 분석결과에 의하면 Case II의 경우 결합체와 매트릭스 고무 사이에 뚜렷한 계면이 발생하였지만, Case I의 경우 적절한 가공조건 아래서 결합제와 매트릭스 고무 사이의 반응에 의해 새로운 상이 생성됨을 알 수 있었다. 또한, SBR-나일론 고무복합체의 최적 성능을 위한 결합제의 최적 조성은 레소시놀과 헥사메틸렌테트라민의 mole비가 1.2:1인, 즉 레소시놀과 포름알데히드의 mole비가 1:5인 조성이었다.

  • PDF

ZnO@Ni-Co-S Core-Shell Nanorods-Decorated Carbon Fibers as Advanced Electrodes for High-Performance Supercapacitors

  • Sui, Yanwei;Zhang, Man;Hu, Haihua;Zhang, Yuanming;Qi, Jiqiu;Wei, Fuxiang;Meng, Qingkun;He, Yezeng;Ren, Yaojian;Sun, Zhi
    • Nano
    • /
    • 제13권12호
    • /
    • pp.1850148.1-1850148.9
    • /
    • 2018
  • The interconnected three-dimensional Ni-Co-S nanosheets were successfully deposited on ZnO nanorods by a one-step potentiostatic electrodeposition. The Ni-Co-S nanosheets provide a large electrode/electrolyte interfacial area which has adequate electroactive sites for redox reactions. Electrochemical characterization of the ZnO@Ni-Co-S core-shell nanorods presents high specifc capacitance (1302.5 F/g and 1085 F/g at a current density of 1 A/g and 20 A/g), excellent rate capabilities (83.3% retention at 20 A/g) and great cycling stability (65% retention after 5000 cycles at a current density of 30 A/g). The outstanding electrochemical performance of the as-prepared electrode material also can be ascribed to these reasons that the special structure improved electrical conductivity and allowed the fast diffusion of electrolyte ions.

일체형 재생 연료전지(URFC)용 고분자 전해질 막의 이해 (Understanding of Polymer Electrolyte Membrane for a Unitized Regenerative Fuel Cell (URFC))

  • 정호영
    • 공업화학
    • /
    • 제22권2호
    • /
    • pp.125-132
    • /
    • 2011
  • 본 연구에서는 차세대 연료전지 기술로서 일체형 재생 연료전지(Unitized Regenerative Fuel Cell, URFC)에 대하여 검토하였다. URFC는 신재생 에너지원과 연료전지의 하이브리드 시스템 구현을 목적으로 하는 필수 기술이며 21세기 수소경제 사회 완성을 위한 신기술로 평가된다. 특히 본 연구에서는 URFC 요소 기술로서 고분자 전해질 막에 대한 연구 결과를 정리하여 URFC 기술의 이해를 돕고자 하는 것이 목적이다. URFC용 고분자 전해질 막은 기능적 특성상 높은 수소이온 전도도, 치수안정성, 기계적 물성 및 계면 안정성이 요구된다. 이를 바탕으로 미래 에너지원인 수소의 생산, 저장, 이용을 일체화된 시스템으로 완성시킬 수 있는 URFC 기술은 향후 연료전지 기술과 더불어 풍력과 태양광 발전 등의 신재생 에너지 관련 기술을 함께 발전시킬 수 있는 새로운 연구 분야가 될 것으로 판단된다.