Browse > Article
http://dx.doi.org/10.14478/ace.2011.22.2.125

Understanding of Polymer Electrolyte Membrane for a Unitized Regenerative Fuel Cell (URFC)  

Jung, Ho-Young (Department of Chemical Engineering, Kangwon National University)
Publication Information
Applied Chemistry for Engineering / v.22, no.2, 2011 , pp. 125-132 More about this Journal
Abstract
A unitized regenerative fuel cell (URFC) as a next-generation fuel cell technology was considered in the study. URFC is a mandatory technology for the completion of the hybrid system with the fuel cell and the renewable energy sources, and it can be expected as a new technology for the realization of hydrogen economy society in the $21^{st}$ century. Specifically, the recent research data and results concerning the polymer electrolyte membrane for the URFC technology were summarized in the study. The prime requirements of polymer electrolyte membrane for the URFC applications are high proton conductivity, dimensional stability, mechanical strength, and interfacial stability with the electrode binder. Based on the performance of the polymer electrolyte membrane, the URFC technology combining the systems for the production, storage, utilization of hydrogen can be a new research area in the development of an advanced technology concerning with renewable energy such as fuel cell, solar cell, and wind power.
Keywords
Nafion; polymer electrolyte membrane (PEM); fuel cell; electrolyzer; unitized regenerative fuel cell (URFC);
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 F. Mitlitsky, B. Myers, A. H. Weisberg, T. M. Molter, and W. F. Smith, Portable Fuel Cells Conference, Lucerne, Switzerland, June 21-24 (1999).
2 https://www.llnl.gov/str/Mitlit.html.
3 F. Mitlitsky, B. Myers, and A. H.Weisberg, Energy & Fuels, 12, 56 (1998).   DOI   ScienceOn
4 K. A. Burke, NASA/TM-2003-212739 (2003).
5 K. A. Burke, Ian Jakupca, NASA/TM-2004-213355 (2004).
6 K. A. Burke, Ian Jakupca, NASA/TM-2005-213442 (2005).
7 U. Wittstadt, E. Wagner, and T. Jungmann, J. Power Sources, 145, 555 (2005).   DOI   ScienceOn
8 T. Ioroi, T. Oku, 1, K. Yasuda, N. Kumagai, and Y. Miyazaki, J. Power Sources, 124, 385 (2003).   DOI   ScienceOn
9 G. Chen, H. Zhang, J. Cheng, Y. Ma, and H. Zhong, Electrochem. Commun., 10, 1373 (2008).   DOI   ScienceOn
10 H.-Y. Jung, S. Park, and B. N. Popov, J. Power Sources, 191, 357 (2009).   DOI   ScienceOn
11 E. Slavcheva, I. Radev, S. Bliznakov, G. Topalov, P. Andreev, and E. Budevski, Electrochim. Acta, 52, 3889 (2007).   DOI   ScienceOn
12 W. Yao, J. Yang, J. Wang, and Y. Nuli, Electrochem. Commun., 9, 1029 (2007).   DOI   ScienceOn
13 T. Ioroi, N. Kitazawa, K. Yasuda, Y. Yamamoto, and H. Takenakaa, J. Electrochem. Soc., 147, 2018 (2000).   DOI   ScienceOn
14 S.-D. Yim, G.-G. Park, Y.-J. Sohn, W.-Y. Lee, Y.-G. Yoon, T.-H. Yang, S. Um, S.-P. Yu, and C.-S. Kim, Int. J. Hydrogen Energ., 30, 1345 (2005).   DOI   ScienceOn
15 H.-Y. Jung, S.-Y. Huang, and B. N. Popov, J. Power Sources, 195, 1950 (2010).   DOI   ScienceOn
16 S.-D. Yim, W.-Y. Lee, Y.-G. Yoon, Y.-J. Sohn, G.-G. Park, T.-H. Yang, and C.-S. Kim, Electrochim. Acta, 50, 713 (2004).   DOI   ScienceOn
17 S. Song, H. Zhang, X. Ma, Z.-G. Shao, Y. Zhang, and B. Yi, Electrochem. Commun., 8, 399 (2006).   DOI   ScienceOn
18 H.-Y. Jung, S.-Y. Huang, P. Ganesan, and B. N. Popov, J. Power Sources, 194, 972 (2009).   DOI   ScienceOn
19 S.-H. Wang, J. Peng, W.-B. Lui, and J.-S. Zhang, J. Power Sources, 162, 486 (2006).   DOI   ScienceOn
20 S.-H. Wang, J. Peng, and W.-B. Lui, J. Power Sources, 160, 485 (2006).   DOI   ScienceOn
21 R. P. O'Hayre and S.-W. Cha, W. Colella, and F. B. Prinz, Fuel cell fundamentals, John Wiley & Sons, New York (2006).
22 J. Peron, A. Mani, X. Zhao, D. Edwards, M. Adachi, T. Soboleva, Z. Shi, Z. Xie, T. Navessin, and S. Holdcroft, J. Membr. Sci., 356, 44 (2010).   DOI   ScienceOn
23 W. Y. Hsu and T. D. Gierke, J. Membr. Sci., 13, 307 (1983).   DOI   ScienceOn
24 M. Fujimura, T. Hashimoto, and H. Kawai, Macromolecules, 14, 1309 (1981).   DOI
25 R. B. Moore and C. R. Martin, Macromolecules, 21, 1334 (1988).   DOI   ScienceOn
26 http://www.fuelcell.com/techsheets/Nafion%201135%20115-%20117.pdf.
27 P. Be´bin, M. Caravanier, and H. Galiano, J. Membr. Sci., 278, 35 (2006).   DOI   ScienceOn
28 R. S. McLean, M. Doyle, and B. B. Sauer, Macromolecules, 33, 6541 (2000).   DOI   ScienceOn
29 W. Vielstich, A. Lamm, and H. A. Gasteiger, Hand book of fuel cells, Vol.3, Part 3, John Wiley & Sons, New York (2003).
30 H.-Y. Jung and J.-K. Park, Int. J. Hydrogen Energ., 34, 3915 (2009).   DOI   ScienceOn
31 Y. S. Kim, M. A. Hickner, L. Dong, B. S. Pivovar, and J. E. McGrath, J. Membr. Sci., 243, 317 (2004).   DOI   ScienceOn
32 G. Gebel, P. Aldebert, and M. Pineri, Macromolecules, 20, 1425 (1987).   DOI
33 H.-Y. Jung and J.-K. Park, Korean Chem. Eng. Res., 45, 391 (2007).
34 J. A. Kolde, B. Bahar, M. S. Wilson, T. A. Zawodzinski, and S. Gottesfeld, Proceedings of the First International Symposium on Proton Conducting Membrane Fuel Cells I, Electrochemical Society Proceedings, 95, 193 (1995).
35 http://www.fuelcell.com/techsheets/Nafion%201135%20115-%20117.pdf.
36 F. Liu, B. Yi, D. Xing, J. Yu, and H. Zhang, J. Membr. Sci., 212, 213 (2003).   DOI   ScienceOn
37 Y. S. Kim, L. Dong, M. Hickner, T. E. Glass, and J. E. McGrath, Macromolecules, 36, 6281 (2003).   DOI   ScienceOn