• Title/Summary/Keyword: Interfacial Tension

Search Result 186, Processing Time 0.03 seconds

Preparation of Polystyrene particles based on interfacial stability of suspension polymerization (현탁중합의 계면안정에 따른 폴리스티렌 입자 제조)

  • 이진호;이상남;박문수;김은경;문명준
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.20 no.1
    • /
    • pp.65-78
    • /
    • 2002
  • The suspension polymerization of styrene was carried out to obtain the narrow-size distribution of particle by using poly(vinyl alcohol) (PVA) as suspension stabilizer according to the degree of hydrolysis and the molecular weight. The stabilizing properties of suspension are also dependent on the interfacial tension of aqueous solution when PVA is added. When the polymerization process was carried out with low hydrolyzed PVA, it gave single, well-defined particles, while high hydrolyzed PVA gave clusters. The size of particle produced in this study ranged between 5${\mu}{\textrm}{m}$ and 10${\mu}{\textrm}{m}$. The suspending agent, PVA, influences on the drop size and drop stability, When the molecular weight of PVA is increased, the drop size decreases and the drops become more stable toward coalescence. An increase in the PVA concentration decreases the mean drop size and narrows the drop size distribution.

  • PDF

A Theory of Polymer Adsorption from Solution

  • Lee, Woong-Ki;Pak, Hyung-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.1
    • /
    • pp.19-26
    • /
    • 1987
  • A statistical thermodynamical treatment for polymer adsorption from solution is presented. The canonical partition function for the polymer solution in the presence of a surface or an impermeable interface is formulated on the basis of usual quasi-crystalline lattice model, Bragg-Williams approximation of random mixing, and Pak's simple treatment of liquid. The present theory gives the surface excess ${\Gamma}_{exc}$ and the surface coverage ${\phi}^s_2$ of the polymer as a function of the chain length x, the Flory-Huggins parameter x, the adsorption energy parameter $x_s$, and polymer concentration $v_2$. Present theory is also applicable to the calculation of interfacial tension of polymer solution against water. For the idealized flexible polymer, interfacial tensions according to our theory fit good to the experimental data to the agreeable degrees.

A Study on the Aggregation properties of Sodium hyaluronate with Alkanediyl-bis(dimethylalkylammonium bromide) surfactants in aqueous solution (수용액에서 Sodium hyaluronate와 Alkanediyl-bis(dimethylalkylammonium bromide) 계면활성제의 회합성질에 관한 연구)

  • Ahn, Beom-Shu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.1003-1009
    • /
    • 2021
  • A study on the associative properties of sodium hyaluronate (NaHA) and Alkane-bis (dimethylalkylammonium bromide) surfactants in aqueous solution was investigated in relation to the chemical structure of surfactants. As a result of measuring the interfacial tension, a parabolic graph showing the minimum value (cmin) at a specific concentration was shown. Above this minimum concentration the increase in interfacial tension is thought to be related to the formation of aggregates of NaHA chains and dimeric surfactants. The plot of viscosity vs surfactant concentration shows a slight maxium at cmin and a viscosity decrease at high surfactant concentrations. Viscosity nonlinear behavior is related to the size increase due to the complex growth and to the size shrinkage following from the interaction with electrolyte ions and free micelles. The results of surface tension measurements show a broad region of surface tension decrease, indicating the NaHA-surfactant interaction. The increase in surface tension above cmin may be related to the adsorption of clusters, consisting of free NaHA chains and dimeric surfactant. The strong adsorption of surfactant is observed at high concentrations.

Phase Behavior and Detergency of Methoxy Polyoxyethylene Dodecanoate (Methoxy Polyoxyethylene Dodecanoate의 상거동과 세정성)

  • Kang, Y.S.;Yun, Y.G.;Lee, J.H.;Nam, K.D.
    • Applied Chemistry for Engineering
    • /
    • v.9 no.3
    • /
    • pp.413-418
    • /
    • 1998
  • Methoxy polyoxyethylene dodecanoates are a kind of nonionic surfactants obtainable from reaction of fatty acid methyl ester with ethylene oxide utilizing a solid catalyst. Methoxy polyoxyethylene dodecanoates have economical advantage compared with polyoxyethylene dodecyl ethers using fatty alcohol. In this work, the solubilizing capacity concerned with phase behavior of ternary systems composed of nonionic surfactant/water/oil, interfacial tension and detergency at the phase inversion temperature(PIT) were investigated and compared with those of polyoxyethylene dodecyl ethers in order to confirm the applicability of methoxy polyoxyethylene dodecanoates in the detergents. Methoxy polyoxyethylene dodecanoates showed the solubilizing capacity of 10~18% for hexadecane which were about 6% higher than polyoxyethylene dodecyl ethers. At the PIT condition, methoxy polyoxyethylene dodecanoates' interfacial tension were 0.0124~0.0176 dyne/cm while polyoxyethylene dodecyl ethers have the value of 0.013~0.0163 dyne/cm and methoxy polyoxyethylene dodecanoates showed higher detergency of 82.1~83.2% than polyoxyethylene dodecyl ethers of 76.5~77.3%. The good detergency performance of methoxy polyoxyethylene dodecanoates would be due to the higher oil solubilizing power and lower interfacial tension than polyoxyethylene dodecyl ethers at the PIT condition.

  • PDF

Emulsifying Properties of Concentrated Red Ginseng Extract: Influence of Concentration, pH, NaCl (홍삼농축액 함유 유화액의 유화특성에 관한연구)

  • You, Kawn-Mo;Jang, Hyeon-Ho;Lee, Eui-Seok;Lee, Ki-Teak;Hong, Soon-Taek
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.504-514
    • /
    • 2017
  • This study was carried out to investigate the emulsifying properties of concentrated red ginseng extract (CRGE). First, we determined the interfacial tension of CRGE at the oil-water interface. Second, oil-in-water emulsions were prepared with CRGE and then their physicochemical properties such as fat globule size, zeta-potential, dispersion stability, and microscopic characteristics were determined. It was found that interfacial tension gradually decreased with increasing CRGE concentration, indicative of some surface activity. In emulsions, fat globule size was decreased as CRGE concentration increased, showing a critical value ($d_{43}$$0.39{\mu}m$) at ${\geq}3.5wt%$ of CRGE. In addition, pH and NaCl also influenced on fat globule sizes; they were increased in acidic conditions ($pH{\leq}3$) or in higher NaCl concentration (${\geq}0.4M$) and these results were interpreted in view of the change in zeta potentials. The dispersion stability by separation analyzer ($LUMiFuge^{(R)}$) showed that it was more stable in emulsions with higher CRGE concentration (i.e., ${\geq}3.5wt%$). In conclusion, CRGE was surface-active and it could be used as an emulsifier in preparation of food emulsions.

Shampoo Characteristics of Botanical Extract Containing Green Tea, Saururus chinensis and Prunus padus (녹차, 삼백초, 귀룽나무 등을 포함한 식물성 추출물의 샴푸로서의 특성)

  • Hwang, Danbi;Shin, Hyejin;Jeong, Hyangli;Noh, Daeyoung;Kim, Misung;Kim, Jinhong;Kim, Donguk
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.663-666
    • /
    • 2015
  • In this research, botanical extracts containing green tea, Saururus chinensis and Prunus padus were tested to see possibility as shampoo. Leaves of Green tea and Saururus chinensis were extracted with hot water. Prunus padus bark extract was applied reverse osmosis and ultrasonic extraction. When interfacial tension was measured among shampoo including botanical extracts, Sodium dodecylsulfate(SDS) and Quillaja Bark Saponin(QBS), that of shampoo was lower than that of SDS and QBS at lower concentration, however, it showed similar interfacial tension at 100% concentration. Shampoo showed moderate antimicrobial activity in Staphylococcus aureus and Candida albicans. Botanical extract did not indicate cell toxicity up to $350{\mu}g/ml$ concentration in MTT assay. Shampoo containing botanical extract was stable for 3 months, however, it showed considerable variation in pH and viscosity. In conclusion, shampoo containing botanical extract shows strong possibility for natural shampoo if the formulation is modified.

Effect of Cosurfactant on Solubilization of Hydrocarbon Oils by Pluronic L64 Nonionic Surfactant Solution (보조계면활성제가 Pluronic L64 비이온 계면활성제에 의한 탄화수소 오일 가용화에 미치는 영향)

  • Bae, MinJung;Kim, DoWon;Cho, Seo-Yeon;Lim, JongChoo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.219-225
    • /
    • 2014
  • In this study, effect of cosurfactant on the solubilization rate of n-octane, n-decane and n-dodecane oil was performed by micellar solutions of polymeric nonionic surfactant Pluronic L64($EO_{13}PO_{30}EO_{13}$) at room temperature. It has been found that the solubilization rate of a hydrocarbon oil was enhanced with an increase in both chain length and amount of alcohol added. In case of addition of a short chain alcohol such as 1-butanol, the solubilization rate of a hydrocarbon oil was slightly increased since most of alcohol molecules remained in an aqueous surfactant solution. On the other hand, the addition of a relatively long chain alcohol such as 1-hexanol and 1-octanol produced a big increase in solubilization rate of a hydrocarbon oil mainly due to incorporation of alcohol molecules into micelles and thus producing more flexible micellar packing density. Dynamic interfacial tension measurements showed the same trend found in solubilization rate measurement. Both interfacial tension value at equilibrium and time required to reach equilibrium decreased with an increase in chain length of an alcohol.

Solubilization Mechanism of n-Octane by Polymeric Nonionic Surfactant Solution (고분자 비이온 계면활성제 수용액에 의한 옥탄의 가용화 메커니즘에 관한 연구)

  • Bae, MinJung;Lim, JongChoo
    • Applied Chemistry for Engineering
    • /
    • v.20 no.1
    • /
    • pp.15-20
    • /
    • 2009
  • In this study, solubilization experiments of n-octane oil were performed by micellar solutions of polymeric nonionic surfactant Pluronic L64 ($EO_{13}PO_{30}EO_{13}$) at room temperature. A single spherical drop of n-octane was injected into aqueous surfactant solution using an oil drop contacting technique and solubilization rate of n-octane was measured by observing the size of oil drop with time. It was found that solubilization rate was independent of initial oil drop size but inversely proportional to the initial surfactant concentration. These results revealed that solubilization of n-octane oil by L64 micellar solution is controlled by interface-controlled mechanism rather than diffusion-controlled mechanism. Dynamic interfacial tension measurements showed that interfacial tension decreases such as from $2.59{\times}10^{-2}$ to $2.45{\times}10^{-2}$, and further to $2.13{\times}10^{-2}mN/m$ as surfactant concentration increases from 8 to 9 and further to 10 wt% respectively. The equilibration time was also found to decrease slightly with an increase in surfactant concentration. All three systems reached an equilibrium within 7 minutes.

Solubilization Mechanism of Hydrocarbon Oils by Polymeric Nonionic Surfactant Solution (고분자 비이온 계면활성제 수용액에 의한 탄화수소 오일의 가용화 메커니즘)

  • Bae, Min Jung;Lim, Jong Choo
    • Korean Chemical Engineering Research
    • /
    • v.47 no.1
    • /
    • pp.24-30
    • /
    • 2009
  • In this study, solubilization experiments of n-decane, n-undecane and n-dodecane oil were performed by micellar solutions of polymeric nonionic surfactant Pluronic L64($EO_{13}PO_{30}EO_{13}$) at room temperature. A single spherical drop of hydrocarbon oil was injected into aqueous surfactant solution using an oil drop contacting technique and solubilization rate of hydrocarbon oil was measured by observing the size of oil drop with time. It was shown that solubilization rate decreased with the alkane carbon number(ACN) of the hydrocarbon oil. The solubilization rate was also found to be independent of initial oil dorp size and almost linearly proportional to the initial surfactant concentration. These results revealed that solubilization of n-decane, n-undecane and n-dodecane oils by L64 micellar solution is controlled by interface-controlled mechanism but not by diffusion-controlled mechanism. The equilibrium solubilization capacity(ESC) was measured by a turbidimeter and the result showed that EAC decreased with an increase in ACN but increased with both increases in surfactant concentration and solubilization rate. Dynamic interfacial tension measurements showed that interfacial tension and equilibrium time increased with an increase in ACN of hydrocarbon oil but decreased with an increase in surfactant concentration.

Effect of Cosurfactant on Microemulsion Phase Behavior in NP7 Surfactant System (보조계면활성제가 NP7 계면활성제 시스템의 마이크로에멀젼 형성에 미치는 영향에 관한 연구)

  • Lim, HeungKyoon;Lee, Seul;Mo, DaHee;Lim, JongChoo
    • Applied Chemistry for Engineering
    • /
    • v.22 no.4
    • /
    • pp.416-422
    • /
    • 2011
  • In this study, the effect of cosurfactant on the phase equilibrium and dynamic behavior was studied in systems containing NP7 nonionic surfactant solutions and nonpolar hydrocarbon oils. All cosurfactants used during this study such as n-pentanol, n-octanol and n-decanol acted as a hydrophobic additive and thus promoted the transition from an oil in water (O/W) microemulsion (${\mu}E$) in equilibrium with an excess oil phase to a three-phase region containing excess water, excess oil, and a middle-phase microemulsion and further to a water in oil (W/O) ${\mu}E$ in equilibrium with the excess water phase. The transition temperature was found to decrease with both increases in the chain length and amount of addition of a cosurfactant. Dynamic behavior studies under O/W ${\mu}E$ conditions showed that an oil drop size decreased with time due to the solubilization into micelles. On the other hand, both the spontaneous emulsification of water into the oil phase and the expansion of oil drop were observed under W/O ${\mu}E$ conditions because of the diffusion of surfactant and water into the oil phase. Under conditions of a three-phase region including a middle-phase ${\mu}E$, both the rapid solubilization and emulsification of the oil into aqueous solutions were found mainly due to the existence of ultra-low interfacial tension. Dynamic interfacial tension measurements have been found to be in a good agreement with dynamic behavior results.