• Title/Summary/Keyword: Interfacial Slip

Search Result 74, Processing Time 0.031 seconds

Interfacial shear resistance of angle shear connectors welded to concrete filled U-shaped CFS beam

  • Oh, Hyoung Seok;Shin, Hyeongyeop;Ju, Youngkyu;Kang, Thomas H.K.
    • Steel and Composite Structures
    • /
    • v.43 no.3
    • /
    • pp.311-325
    • /
    • 2022
  • For multi-story structural systems, Korean steel industry has fostered development of a steel-concrete composite beam. Configuration of the composite beam is characterized by steel angle shear connectors welded to a U-shaped cold formed-steel beam. Effects of shear connector orientation and spacing were studied to evaluate current application of the angle shear connector design equation in AC495. For the study, interfacial shear resistance behavior was investigated by conducting 24 push-out tests and attuned using unreinforced push-out specimens. Interfacial shear to horizontal slip response was reported along with corresponding failure patterns. Pure shear connector strength was also evaluated by excluding concrete shear contribution, which was estimated in relation to steel beam-slab interface separation or interfacial crack width.

Influence of Fiber Breaks on the Frictional Work in a Continuous Fiber-Reinforced Ceramic Matrix Composite (장섬유로 보강된 세라믹 복합재료에서 섬유파단이 마찰일에 미치는 영향)

  • 조종두
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1730-1737
    • /
    • 1994
  • Theoretical equations for an influence of fiber breaks on the frictional heating phenomenon in a uniaxially fiber-reinforced ceramic matrix composite are formulated. The microslip and gross slip phases are considered for deriving the equations. During a complete loading/unloading cycle, the work done against friction is derived. In order to estimate interfacial shear in a unidirectionally reinforced ceramic matrix composite which has fiber fractures as well as matrix cracks, parametric studies using the derived equations are done. In a case of less than 10% fiber fractures, additional frictional work due to fiber breaks can be neglected compared to the rest.

Damping Characterization of Carbon Nanotube/Epoxy Composites (탄소나노튜브/에폭시 복합소재의 감쇠특성 분석)

  • Shin, Eung-Soo;Lee, Jong-Hwa
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.497-502
    • /
    • 2003
  • This study intends to provide the analytical and experimental damping characterization of carbon nanotube/epoxy composites. A constitutive model based on continuum mechanics is employed to describe epoxy and the perfectly bonded and partially bonded nanotubes. An interfacial stick-slip between the nanotubes and epoxy is considered to characterize the damping of the composites. For experimental estimation, beam-type specimens are prepared with a variation of nanotube concentration from 0.5% to 2% in weight. An ultrasonic agitation method is employed for enhancing the nanotube dispersion within epoxy. Damping of the composites is characterized in terms of the strain and the nanotube concentration. Results show that the nanotube concentration significantly affects the damping characteristics of the nanocomposites. A good correlation is found between the analytical prediction based on the stick-slip and the experimental measurements.

  • PDF

Interfacial Crack-tip Constraints and J-integrals in Plastically Hardening Bimaterials under Full Yielding (완전소성하 변형경화 이종접합재의 계면균열선단 구속상태 및 J-적분)

  • Lee, Hyung-Yil;Kim, Yong-Bom
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1159-1169
    • /
    • 2003
  • This paper investigates the effects of T-stress and plastic hardening mismatch on the interfacial crack-tip stress field via finite element analyses. Plane strain elastic-plastic crack-tip fields are modeled with both MBL formulation and a full SEC specimen under pure bending. Modified Prandtl slip line fields illustrate the effects of T-stress on crack-tip constraint in homogeneous material. Compressive T-stress substantially reduces the interfacial crack-tip constraint, but increases the J-contribution by lower hardening material, J$\_$L/. For bimaterials with two elastic-plastic materials, increasing plastic hardening mismatch increases both crack-tip stress constraint in the lower hardening material and J$\_$L/. The fracture toughness for bimaterial joints would consequently be much lower than that of lower hardening homogeneous material. The implication of unbalanced J-integral in bimaterials is also discussed.

INVESTIGATION OF A STRESS FIELD EVALUATED BY ELASTIC-PLASTIC ANALYSIS IN DISCONTINUOUS COMPOSITES

  • Kim, H.G.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.483-491
    • /
    • 2007
  • A closed form solution of a composite mechanics system is performed for the investigation of elastic-plastic behavior in order to predict fiber stresses, fiber/matrix interfacial shear stresses, and matrix yielding behavior in short fiber reinforced metal matrix composites. The model is based on a theoretical development that considers the stress concentration between fiber ends and the propagation of matrix plasticity and is compared with the results of a conventional shear lag model as well as a modified shear lag model. For the region of matrix plasticity, slip mechanisms between the fiber and matrix which normally occur at the interface are taken into account for the derivation. Results of predicted stresses for the small-scale yielding as well as the large-scale yielding in the matrix are compared with other theories. The effects of fiber aspect ratio are also evaluated for the internal elastic-plastic stress field. It is found that the incorporation of strong fibers results in substantial improvements in composite strength relative to the fiber/matrix interfacial shear stresses, but can produce earlier matrix yielding because of intensified stress concentration effects. It is also found that the present model can be applied to investigate the stress transfer mechanism between the elastic fiber and the elastic-plastic matrix, such as in short fiber reinforced metal matrix composites.

Tribology Research Trends in Chemical Mechanical Polishing (CMP) Process (화학기계적 연마(CMP) 공정에서의 트라이볼로지 연구 동향)

  • Lee, Hyunseop
    • Tribology and Lubricants
    • /
    • v.34 no.3
    • /
    • pp.115-122
    • /
    • 2018
  • Chemical mechanical polishing (CMP) is a hybrid processing method in which the surface of a wafer is planarized by chemical and mechanical material removal. Since mechanical material removal in CMP is caused by the rolling or sliding of abrasive particles, interfacial friction during processing greatly influences the CMP results. In this paper, the trend of tribology research on CMP process is discussed. First, various friction force monitoring methods are introduced, and three elements in the CMP tribo-system are defined based on the material removal mechanism of the CMP process. Tribological studies on the CMP process include studies of interfacial friction due to changes in consumables such as slurry and polishing pad, modeling of material removal rate using contact mechanics, and stick-slip friction and scratches. The real area of contact (RCA) between the polishing pad and wafer also has a significant influence on the polishing result in the CMP process, and many researchers have studied RCA control and prediction. Despite the fact that the CMP process is a hybrid process using chemical reactions and mechanical material removal, tribological studies to date have yet to clarify the effects of chemical reactions on interfacial friction. In addition, it is necessary to clarify the relationship between the interface friction phenomenon and physical surface defects in CMP, and the cause of their occurrence.

Measurement of Electrical Resistance Method in Characterizing the Slip ratio of Carbon fiber/Matrix at the Interface (전기저항 측정법을 이용한 탄소섬유/기지 간 계면에서의 섬유 미끌림 정도 측정방법)

  • Kwon, Dong-Jun;Wang, Zuo-Jia;Gu, Ga-Young;Park, Joung-Man
    • Composites Research
    • /
    • v.25 no.6
    • /
    • pp.205-210
    • /
    • 2012
  • The single carbon fiber tensile test was performed with electrical resistance measurement. Tensile property of single carbon fiber which accompanied by the relationship between the electric resistance and the strain was investigated. Since the collected data showed a linear relationship between them, the coefficient of fiber slip ratio (FSR) was obtained by computation. The fragmentation specimen (FS) was tested under tensile loading, and the single carbon fiber broke first due to the stress transferring form matrix to reinforcing fiber. The stress distribution of carbon fiber could be observed via the electrical resistance change. Slipping between carbon fiber and matrix was predicted based on the fragmentation test results, and the FSR was used to evaluate interfacial adhesion comparatively. The large FSR indicated poor interfacial bonding. Work of adhesion between carbon fiber and matrix was measured to verify the FSR method, and two results exhibited a consistent conclusion.

Interface monitoring of steel-concrete-steel sandwich structures using piezoelectric transducers

  • Yan, Jiachuan;Zhou, Wensong;Zhang, Xin;Lin, Youzhu
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.1132-1141
    • /
    • 2019
  • Steel-concrete-steel (SCS) sandwich structures have important advantages over conventional concrete structures, however, bond-slip between the steel plate and concrete may lead to a loss of composite action, resulting in a reduction of stiffness and fatigue life of SCS sandwich structures. Due to the inaccessibility and invisibility of the interface, the interfacial performance monitoring and debonding detection using traditional measurement methods, such as relative displacement between the steel plate and core concrete, have proved challenging. In this work, two methods using piezoelectric transducers are proposed to detect the bond-slip between steel plate and core concrete during the test of the beam. The first one is acoustic emission (AE) method, which can detect the dynamic process of bond-slip. AE signals can be detected when initial micro cracks form and indicate the damage severity, types and locations. The second is electromechanical impedance (EMI) method, which can be used to evaluate the damage due to bond-slip through comparing with the reference data in static state, even if the bond-slip is invisible and suspends. In this work, the experiment is implemented to demonstrate the bond-slip monitoring using above methods. Experimental results and further analysis show the validity and unique advantage of the proposed methods.

Lubrication phenomenon in the stagnation point flow of Walters-B nanofluid

  • Muhammad Taj;Manzoor Ahmad;Mohamed A. Khadimallah;Saima Akram;Muzamal Hussain;Madeeha Tahir;Faisal Mehmood Butt;Abdelouahed Tounsi
    • Advances in concrete construction
    • /
    • v.15 no.5
    • /
    • pp.303-312
    • /
    • 2023
  • The present study investigates the effects of Cattaneo-Christov thermal effects of stagnation point in Walters-B nanofluid flow through lubrication of power-law fluid by taking the slip at the interfacial condition. For the solution, the governing partial differential equation is transformed into a series of non-linear ordinary differential equations. With the help of hybrid homotopy analysis method; that consists of both the homotopy analysis and shooting method these equations can be solved. The influence of different involved constraints on quantities of interest are sketched and discussed. The viscoelastic parameter, slip parameters on velocity component and temperature are analyzed. The velocity varies by increase in viscoelastic parameter in the presence of slip parameter. The slip on the surface has major effect and mask the effect of stagnation point for whole slip condition and throughout the surface velocity remained same. Matched the present solution with previously published data and observed good agreement. It can be seen that the slip effects dominates the effects of free stream and for the large values of viscoelastic parameter the temperature as well as the concentration profile both decreases.