• Title/Summary/Keyword: Interface reaction

Search Result 697, Processing Time 0.022 seconds

Preparation of MWCNTs/Poly(methyl methacrylate) Composite Particles via the Emulsion Polymerization of Methyl Methacrylate Using MWCNTs Modified by Silanization Reaction and Their Morphological Characteristics (실란화 반응으로 표면 개질된 다중벽 탄소나노튜브(MWCNTs)와 Methyl Methacrylate의 유화중합을 통한 MWCNTs/Poly(methyl methacrylate) 복합 입자 제조 및 그 형태학적 특성)

  • Kwon, Jaebeom;Park, Seonghwan;Kim, Sunghoon;Jo, Jieun;Han, Changwoo;Ha, KiRyong
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.329-337
    • /
    • 2015
  • In this study, multi-walled carbon nanotubes (MWCNTs) were oxidized with a mixture of nitric acid and sulfuric acid. After oxidation, oxidized MWCNTs were treated with thionyl chloride ($SOCl_2$) and 1,4-butanediol (BD) in sequence at room temperature to introduce hydroxyl groups on the surface of MWCNTs. The prepared MWCNT-OH was silanized with 3-methacryloxypropyltrimethoxylsilane (MPTMS) to make MWCNT-MPTMS. The MWCNT-MPTMS was used as fillers in emulsion polymerization to make MWCNT-MPTMS/PMMA composite particles with 3 kinds of emulsifiers, hexadecyltrimethylammoniumbromide (CTAB) as a cationic, sodium dodecylbenzene sulfonate (SDBS) as an anionic and polyethylene glycol tert-octylphenyl ether (Triton X-114) as a nonionic emulsifier. Morphologies of composite emulsions were confirmed by a particle size analyzer (PSA) and a scanning electron microscope (SEM). Morphologies of emulsion polymerized MWCNT-MPTMS/PMMA with SDBS showed more uniform particle size distribution compared to those of other two emulsifiers used emulsions. MWCNT-MPTMS/PMMA showed $3.4^{\circ}C$ higher $T_g$ compared to pristine MWCNT/PMMA due to covalent bond formation at interface of MWCNT-MPTMS and PMMA.

Characteristics of TiN Barrier Metal Prepared by High Density Plasma CVD Method (고밀도 플라즈마 CVD 방법에 의한 TiN barrier metal 형성과 특성)

  • Choe, Chi-Gyu;Gang, Min-Seong;O, Gyeong-Suk;Lee, Yu-Seong;O, Dae-Hyeon;Hwang, Chan-Yong;Son, Jong-Won;Lee, Jeong-Yong;Kim, Geon-Ho
    • Korean Journal of Materials Research
    • /
    • v.9 no.11
    • /
    • pp.1129-1136
    • /
    • 1999
  • TIN films were prepared on Si(100) substrate by ICP-CVD(inductive1y coupled plasma enhanced chemical vapor deposition) using TEMAT(tetrakis ethylmethamido titanium : Ti$[\textrm{N}\textrm{(CH)}_{3}\textrm{C}_{2}\textrm{H}_{5}]_{4}$) precursor at various deposition conditions. Phase, microstructure, and the electrical properties of TIN films were characterized by x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), high resolution transmission electron microscopy (HRTEM) and electrical measurements. Polycrystalline TiN films with B1 structure were grown at temperatures over $200^{\circ}C$. Preferentially oriented along TiN(111) films were obtained at temperatures over $300^{\circ}C$ with the flow rates of 10, 5, and 5 sccm for TEMAT, $\textrm{N}_{2}$ and Ar gas. The TiN/Si(100) interface was flat and no chemical reaction between TIN and $\textrm{SiO}_2$ was found. The resistivity, carrier concentration and the carrier mobility for the TiN sample prepared at $500^{\circ}C$ are 21 $\mu\Omega$cm, 9.5$\times\textrm{10}^{18}\textrm{cm}^{-3}$ and $462.6\textrm{cm}^{2}$/Vs, respectively.

  • PDF

Na Borosilicate Glass Surface Structures: A Classical Molecular Dynamics Simulations Study (소듐붕규산염 유리의 표면 구조에 대한 분자 동역학 시뮬레이션 연구)

  • Kwon, Kideok D.;Criscenti, Louise J.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.119-127
    • /
    • 2013
  • Borosilicate glass dissolution is an important chemical process that impacts the glass durability as nuclear waste form that may be used for high-level radioactive waste disposal. Experiments reported that the glass dissolution rates are strongly dependent on the bulk composition. Because some relationship exists between glass composition and molecular-structure distribution (e.g., non-bridging oxygen content of $SiO_4$ unit and averaged coordination number of B), the composition-dependent dissolution rates are attributed to the bulk structural changes corresponding to the compositional variation. We examined Na borosilicate glass structures by performing classical molecular dynamics (MD) simulations for four different chemical compositions ($xNa_2O{\cdot}B_2O_3{\cdot}ySiO_2$). Our MD simulations demonstrate that glass surfaces have significantly different chemical compositions and structures from the bulk glasses. Because glass surfaces forming an interface with solution are most likely the first dissolution-reaction occurring areas, the current MD result simply that composition-dependent glass dissolution behaviors should be understood by surface structural change upon the chemical composition change.

Analysis of Electrochemical Characteristics of the Rechargeable $LiMn_2O_4$ Thin Film Battery (재충전이 가능한 박막전자용 $LiMn_2O_4$ 박막 전지의 전기화학 특성 분석)

  • Kim Joo-Seok;Jung Hunjoon;Kim Chan-Soo;Joo Seung-Ki
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.3
    • /
    • pp.131-135
    • /
    • 2000
  • In order to investigate the origin of capacity fading with charge/discharge cycling in $LiMn_2O_4$ thin film battery, impedance studies have been performed with increasing cycling in $LiMn_2O_4/1M\;LiClO_4-PC/Li$ cells. The fitted values obtained from impedance data show good agreements with the experimental results. Especially, the element of charge transfer resistance of $LiMn_2O_4/liquid$ electrolyte interface initially increased, and then saturated with increasing the charge/discharge cycles, which could explain the cause of initial abrupt capacity fading of $LiMn_2O_4$ thin film with cycling due to interfacial reaction. The steady capacity fading is caused by the increasing of Warburg resistance. The chemical diffusion coefficient of Li ions decreased from $5.15\times10^{-11}cm^2/sec$ at 1st cycles to $6.3\times10^{-12}cm^2/sec$ at 800th cycles, which attributed to the Jahn-Teller distortion/Mn dissolution which diminishes tetra hedral sites necessary for Li diffusion in $LiMn_2O_4$.

Hot Corrosion Behavior of Plasma Sprayed 4 mol% Y2O3-ZrO2 Thermal Barrier Coatings with Volcanic Ash (플라즈마 용사법으로 제작된 4mol% Y2O3-ZrO2 열차폐코팅의 화산재에 의한 고온열화거동)

  • Lee, Won-Jun;Jang, Byung-Koog;Lim, Dae-Soon;Oh, Yoon-Suk;Kim, Seong-Won;Kim, Hyung-Tae;Araki, Hiroshi;Murakami, Hideyuki;Kuroda, Seiji
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.353-358
    • /
    • 2013
  • The hot corrosion behavior of plasma sprayed 4 mol% $Y_2O_3-ZrO_2$ (YSZ) thermal barrier coatings (TBCs) with volcanic ash is investigated. Volcanic ash that deposited on the TBCs in gas-turbine engines can attack the surface of TBCs itself as a form of corrosive melt. YSZ coating specimens with a thickness of 430-440 ${\mu}m$ are prepared using a plasma spray method. These specimens are subjected to hot corrosion environment at $1200^{\circ}C$ with five different duration time, from 10 mins to 100 h in the presence of corrosive melt from volcanic ash. The microstructure, composition, and phase analysis are performed using Field emission scanning electron microscopy, including Energy dispersive spectroscopy and X-ray diffraction. After the heat treatment, hematite ($Fe_2O_3-TiO_2$) and monoclinic YSZ phases are found in TBCs. Furthermore the interface area between the molten volcanic ash layers and YSZ coatings becomes porous with increases in the heat treatment time as the YSZ coatings dissolved into molten volcanic ash. The maximum thickness of this a porous reaction zone is 25 ${\mu}m$ after 100 h of heat treatment.

A Study on Synthesis of Glycidol Based Nonionic Surfactant (글리시돌을 원료로 한 비이온 계면활성제 합성에 관한 연구)

  • Lim, Jong Choo;Kim, Byeong Jo;Choi, Kyu Yong
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.282-291
    • /
    • 2012
  • The PGLE and PGLE3 nonionic surfactants were synthesized from the reaction between glycidol and lauryl acid and their structures were confirmed by $^1H$ and $^{13}C$ NMR analysis. The CMCs of PGLE and PGLE3 surfactants were found to be $3.59{\times}10^{-2}$ mol/L and $8.80{\times}10^{-2}$ mol/L respectively and the surface tensions at their CMC conditions were 26.09 mN/m and 28.68 mN/m respectively. Dynamic surface tension measurement has shown that the adsorption rate of surfactant molecules at the interface between air and surfactant solution was found to be relatively fast in both surfactant systems, presumably due to high mobility of surfactant molecules. The contact angles of PGLE and PGLE3 nonionic surfactants were $25.5^{\circ}$ and $9.5^{\circ}$ respectively. Dynamic interfacial tension measurement showed that both surfactant systems reached equilibrium in 20 minutes and the interfacial tensions at equilibrium condition in both systems were 0.42 mN/m and 0.53 mN/m respectively. The PGLE surfactant system has indicated higher foam stability than the PGLE3 surfactant system, which is consistent with surface tension measurement. The phase behavior experiments performed at $25{\sim}60^{\circ}C$ in systems containing nonionic surfactant, water, n-hydrocarbon oil and cosurfactant showed a lower phase or oil in water microemulsion in equilibrium with excess oil phase at all conditions investigated during this study.

Characteristics of LSC coated Metallic Interconnect for Solid Oxide Fuel Cell (LSC가 코팅된 고체산화물 연료전지용 금속연결재의 특성 연구)

  • Pyo, Seong-Soo;Lee, Seung-Bok;Lim, Tak-Hyoung;Park, Seok-Joo;Song, Rak-Hyun;Shin, Dong-Ryul
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.172-177
    • /
    • 2010
  • This study reports the high-temperature oxidation kinetics, ASR(area specific resistance), and interfacial microstructure of metallic interconnects coated with conductive oxides in oxidation atmosphere at $800^{\circ}C$, The conductive material LSC($La_{0.8}Sr_{0.2}CoO_3$, prepared by Solid State Reaction) was coated on the Crofer22APU. The contact behavior of coating layer/metal substrate was increased by sandblast. The electrical conductivity of the LSC coated Crpfer22APU was measured by a DC two probe four wire method for 4000hr, in air at $800^{\circ}C$. Microstructure and composition of the coated layer interface were investigated by SEM/EDS. These results show that a coated LSC layer prevents the formation and growth of oxide scale such as $Cr_2O_3$ and enhances the long-term stability and electrical performance of metallic interconnects for SOFCs.

Effects of Heat Treatment Conditions on the Interfacial Reactions and Crack Propagation Behaviors in Electroless Ni/electroplated Cr Coatings (열처리 조건에 따른 무전해 Ni/전해 Cr 이중도금의 계면반응 및 균열성장거동 분석)

  • Son, Kirak;Choi, Myung-Hee;Lee, Kyu Hawn;Byon, Eungsun;Rhee, Byong-Ho;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.3
    • /
    • pp.69-75
    • /
    • 2016
  • This study investigated the effect of heat treatment conditions not only on the Cr surface crack propagation behaviors but also on the Ni/Cr interfacial reaction characteristics in electroless Ni/electroplated Cr double coating layers on Cu substrate. Clear band layer of Ni-Cr solid solutions were developed at Ni/Cr interface after heat treatment at $750^{\circ}C$ for 6 h. Channeling cracks formed in Cr layer after 1 step heat treatment, that is, heat treatment after Ni/Cr plating, while little channeling cracks formed after 2 step heat treatment, that is, same heat treatments after Ni and Cr plating, respectively, due to residual stress relaxation due to crystallization of Ni layer before Cr plating.

Investigation of Corrosion Mechanism by Analyses of Spent Chromia Refractory fvom a Coal Gasifier (석탄 가스화기에서의 크로미아 내화물 분석을 통한 화학적 침식 기구 규명)

  • Kim Han Bom;Oh Myongsook
    • Journal of Energy Engineering
    • /
    • v.13 no.4
    • /
    • pp.281-290
    • /
    • 2004
  • Spent refractories from a coal gasifier after 1000 hours of operation were analyzed for crystalline phases, chemical composition and microstructures as a function of slag penetration depth, and the slag corrosion mechanism was determined. The chemical corrosion of chromia refractory occurred via reaction between Cr$_2$O$_3$ of the refractory and FeO and A1$_2$O$_3$ in the slag. The FeO reacted with Cr$_2$O$_3$ at the slare/refractory interface and formed FeCr$_2$O$_4$. After all FeO were consumed, Al in the penetrating slag substituted Cr in Cr$_2$O$_3$, forming (Al, Cr)$_2$O$_3$, at the edges of the particle, which were broken to form fragments rich in Al. The corrosion resistance of Cr$_2$O$_3$ varied with the particle size and the extent of sintering, and the higher resistance was observed in the larger and more sintered particles. There was no chemical change in ZrO$_2$, but showed the effects of physical corrosion: the grain boundaries became more wavy, and ZrO$_2$ grains were split in the corroded area. The slag penetration depth increased in the refractory samples farther down from the feed nozzles.

A Study on the Comparison of Brazed Joint of Zircaloy-4 with PVD-Be and Zr-Be Amorphous alloys as Filler Metals (PVD-Be와 비정질 Zr-Be 합금을 용가재로 사용한 Zircaloy-4의 브레이징 접합부의 비교 연구)

  • Hwang, Yong-Hwa;Kim, Jae-Yong;Lee, Hyung-Kwon;Koh, Jin-Hyun;Oh, Se-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.2
    • /
    • pp.113-119
    • /
    • 2006
  • Brazing is an important manufacturing process in the fabrication of Heavy Water Reactor fuel rods, in which bearing and spacer pads are joined to Zircaloy-4 cladding tubes. The physical vapor deposition(PVD) technique is currently used to deposit metallic Be on the surfaces of pads as a filler metal. Amorphous Zr-Be binary alloys which are manufactured by rapid solidification process are under developing to substitute the conventional PVD-Be coating. In the present study, brazed joint with PVD and amorphous alloys of $Zr_{1-x}Be_{x}(0.3{\le}x{\le}0.5)$ as filler metals are compared by mechanism, microstructure and hardness. The thickness of brazed joint with amorphous alloys became much smaller than that of PVD-Be. The erosion of base metal did not occur in the brazed joint with amorphous alloys. The brazing mechanism for PVD-Be seems to be Be diffusion into Zr-4 with capillary action resulting from eutectic reaction while that for amorphous alloys are associated with the liquid phase formation in the brazed joint. The brazed joint microstructure with PVD-Be consists of dendrite while that with amorphous alloys is globular. The $Zr_{0.7}Be_{0.3}$ alloy shows the smooth interface with little erosion in the base metal and is recommended a most suitable brazing filler metal for Zircaloy-4.

  • PDF