LSC가 코팅된 고체산화물 연료전지용 금속연결재의 특성 연구

Characteristics of LSC coated Metallic Interconnect for Solid Oxide Fuel Cell

  • 표성수 (한국에너지기술연구원 연료전지연구단) ;
  • 이승복 (한국에너지기술연구원 연료전지연구단) ;
  • 임탁형 (한국에너지기술연구원 연료전지연구단) ;
  • 박석주 (한국에너지기술연구원 연료전지연구단) ;
  • 송락현 (한국에너지기술연구원 연료전지연구단) ;
  • 신동열 (한국에너지기술연구원 연료전지연구단)
  • Pyo, Seong-Soo (Fuel Cell Research Center, New and Renewable Energy Research Division, Korea Institute of Energy Research) ;
  • Lee, Seung-Bok (Fuel Cell Research Center, New and Renewable Energy Research Division, Korea Institute of Energy Research) ;
  • Lim, Tak-Hyoung (Fuel Cell Research Center, New and Renewable Energy Research Division, Korea Institute of Energy Research) ;
  • Park, Seok-Joo (Fuel Cell Research Center, New and Renewable Energy Research Division, Korea Institute of Energy Research) ;
  • Song, Rak-Hyun (Fuel Cell Research Center, New and Renewable Energy Research Division, Korea Institute of Energy Research) ;
  • Shin, Dong-Ryul (Fuel Cell Research Center, New and Renewable Energy Research Division, Korea Institute of Energy Research)
  • 투고 : 2009.11.09
  • 심사 : 2009.11.28
  • 발행 : 2010.04.30

초록

본 논문에서는 SOFC 금속연결재로서 Crofer22APU를 적용하고자 표면에 전도성 산화막($La_{0.8}Sr_{0.2}CoO_3$)을 습식코팅 후, SOFC 작동환경에서 산화거동, 전기적 특성변화 및 미세구조 변화를 관찰하였다. 코팅 전 샌드블러스트 장치를 이용한 Crofer22APU 표면처리를 통하여 코팅막/금속의 접합특성을 개선시킬 수 있었으며, 320 mesh의 입자크기를 갖는 알루미나 분말을 이용하여 표면처리한 경우 접착특성이 극대화되었다.$La_{0.8}Sr_{0.2}CoO_3$ 코팅된 시편의 전기적 특성 평가는 4-wire 법을 이용하여 SOFC 작동환경에서 약 4,000 시간 장기성능 평가하였으며 $12mW{\cdot}cm^2$의 낮은 면저항값을 얻을 수 있었다. 실험종료 후 미세구조 분석결과에서도 전도성 산화막($La_{0.8}Sr_{0.2}CoO_3$) 코팅이 금속의 부식으로 인한 산화층의 생성속도를 늦추고 이로 인한 금속의 전기적 특성이 감소하는 것을 방지하는데 유효함을 확인하였다.

This study reports the high-temperature oxidation kinetics, ASR(area specific resistance), and interfacial microstructure of metallic interconnects coated with conductive oxides in oxidation atmosphere at $800^{\circ}C$, The conductive material LSC($La_{0.8}Sr_{0.2}CoO_3$, prepared by Solid State Reaction) was coated on the Crofer22APU. The contact behavior of coating layer/metal substrate was increased by sandblast. The electrical conductivity of the LSC coated Crpfer22APU was measured by a DC two probe four wire method for 4000hr, in air at $800^{\circ}C$. Microstructure and composition of the coated layer interface were investigated by SEM/EDS. These results show that a coated LSC layer prevents the formation and growth of oxide scale such as $Cr_2O_3$ and enhances the long-term stability and electrical performance of metallic interconnects for SOFCs.

키워드

참고문헌

  1. Lashtabeg, A. and Skinner, S. J., "Solid Oxide Fuel Cells-a Challenge for Materials Chemistry," J. Mater. Chem., 16, 3161-3170(2006). https://doi.org/10.1039/b603620a
  2. Yakabe, H., Hishinuma, M., Uratani, M., Matsuzaki, Y., Yasuda, I., "Evaluation and Modeling of Performance of Anode-supPorted Solid Oxide Fuel Cell," J. Power Sources, 86, 423-431(2000). https://doi.org/10.1016/S0378-7753(99)00444-9
  3. Zhu, W. Z., Deevi, S. C., "Development of Interconnect Materials for Solid Oxide Fuel Cells," Mat. Sci. and Eng., A348, 227-243(2003).
  4. Schafer, W., Koch, A., Herold-Schmidt, U. and Stolten, D., "Materials, Interfaces and Production Techniques for Planar Solid Oxide Fuel Cells," Solid State Ionics, 1235-1239(1996).
  5. Koch, S. and Hendriksen, P. V., "Contact Resistance at Ceramic Interfaces and Its Dependence on Mechanical Load," Solid State Ionics, 168(1), 1-11(2004). https://doi.org/10.1016/j.ssi.2004.01.010
  6. Zhu, W. Z. and Deevi, S. C., "Opportunity of Metallic Interconnect for Solid Oxide Fuel Cells: a Status on Contact Resistance," Mat. Res. Bull, 38, 957-972(2003). https://doi.org/10.1016/S0025-5408(03)00076-X
  7. Kim, J.-H., Song, R.-H. and Hyun, S.-H., "Effect of Slurry-coated $LaSrMnO_3$ on the Electrical Property of Fe-Cr Alloy for Metallic Interconnect of SOFC," Solid State Ionics, 174(1-4), 185-191(2004). https://doi.org/10.1016/j.ssi.2004.07.032
  8. Yang, Z., Xia, G. and Stevenson, J. W., "$Mn_{1.5}Co_{1.5}O_4$ Spinel Protection Layers on Ferritic Stainless Steels for SOFC Interconnect Applications", Electrochem. Solid-State Lett., 8(3), 168-170(2005). https://doi.org/10.1149/1.1854122
  9. Yang, Z., Xia, G.-G., Maupin, G. D., Stevenson, J. W., "Conductive Protection Layers on Oxidation Resistant Alloys for SOFC Interconnect Applications," Surf. Coat. Technol., 201, 4476-4483 (2006). https://doi.org/10.1016/j.surfcoat.2006.08.082
  10. Stoermer, A. O., Rupp, J. L. M. and Gauckler, L. J., "Spray Pyrolysis of Electrolyte Interlayers for Vacuum Plasma-sprayed SOFC," Solid State Ionics, 177, 2075-2079(2006). https://doi.org/10.1016/j.ssi.2006.06.033
  11. Zhu, W. Z. and Deevi, S. C., "Opportunity of Metallic Interconnect for Solid Oxide Fuel Cells: a Status on Contact Resistance," Mat. Res. Bull, 38, 957-972(2003). https://doi.org/10.1016/S0025-5408(03)00076-X
  12. Chen, X., Hou, P. Y., Jacobson, C. P., Visco, S. J. and De Jonghe, L. C., "Protective Coating on Stainless Steel Interconnect for SOFCs: Oxidation Kinetics and Electrical Properties," Solid State Ionics, 176, 425-433(2005). https://doi.org/10.1016/j.ssi.2004.10.004
  13. H. M, Kim, S. D., Hyun, S. H. and Kim, H. S., "Development of IT-SOFC Uint Cells with Anode-supported thin Electrolytes Via Tape Casting and Co-firing," Inter. J. Hydro Energy, 33, 1758-1768(2008). https://doi.org/10.1016/j.ijhydene.2007.12.062
  14. Yang, Z., Weil, K. S., Paxton, D. M. and Stevenson, J. W., "Selection and Evaluation of Heat-Resistant Alloys for SOFC Interconnect Applications", J. Electrochem. Soc., 150(9), 1188-1201(2003). https://doi.org/10.1149/1.1595659
  15. Ebnesajjad and Sina, "Surface Treatment of Materials for Adhesion Bonding," William Andrew Publishing(2006).
  16. Pawlowski, L., "The Science and Engineering of Thermal Spray Coatings," John Wiley & Sons Ltd.(1995).
  17. Snogren, R. C., "Handbook on Surface Preparation," Palmerton publishing(1974).