DOI QR코드

DOI QR Code

Na Borosilicate Glass Surface Structures: A Classical Molecular Dynamics Simulations Study

소듐붕규산염 유리의 표면 구조에 대한 분자 동역학 시뮬레이션 연구

  • Kwon, Kideok D. (Department of Geology, Kangwon National University) ;
  • Criscenti, Louise J. (Department of Geochemistry, Sandia National Laboratories)
  • Received : 2013.06.10
  • Accepted : 2013.06.24
  • Published : 2013.06.30

Abstract

Borosilicate glass dissolution is an important chemical process that impacts the glass durability as nuclear waste form that may be used for high-level radioactive waste disposal. Experiments reported that the glass dissolution rates are strongly dependent on the bulk composition. Because some relationship exists between glass composition and molecular-structure distribution (e.g., non-bridging oxygen content of $SiO_4$ unit and averaged coordination number of B), the composition-dependent dissolution rates are attributed to the bulk structural changes corresponding to the compositional variation. We examined Na borosilicate glass structures by performing classical molecular dynamics (MD) simulations for four different chemical compositions ($xNa_2O{\cdot}B_2O_3{\cdot}ySiO_2$). Our MD simulations demonstrate that glass surfaces have significantly different chemical compositions and structures from the bulk glasses. Because glass surfaces forming an interface with solution are most likely the first dissolution-reaction occurring areas, the current MD result simply that composition-dependent glass dissolution behaviors should be understood by surface structural change upon the chemical composition change.

핵폐기물을 고화시키는 재료로 사용하는 붕규산염(borosilicate) 유리의 용해는 지층 처분장에 처리된 고준위 방사성 폐기물의 생태계 유출을 결정할 수 있는 중요한 화학반응이다. 습식 실험에서 유리의 용해속도(dissolution rate)는 유리 화학조성에 의해 크게 좌우되는 것이 관찰된다. 유리의 bulk 구조를 규명한 분광분석 실험에 의하면 유리의 화학조성과 분자수준(molecular-level) 구조(예: $SiO_4$ 사면체의 연결구조와 B 원소의 배위구조) 사이의 상관관계가 존재한다. 따라서 화학조성에 따른 유리 용해도의 차이는 조성에 따른 bulk 내부구조의 변화로 이해되어 왔다. 그런데 유리 표면은 수용액과 계면을 이루면서 용해 과정에서 가장 직접적으로 반응하는 부분이기 때문에, 화학조성에 따른 표면구조 변화에 대한 지식 또한 필요하다. 본 논문에서는 분자 동역학(molecular dynamics, MD) 시뮬레이션을 사용하여 4가지의 다른 화학조성을 가지는 소듐붕규산염 유리($xNa_2O{\cdot}B_2O_3{\cdot}ySiO_2$ 화학조성)에 대하여 bulk 구조와 실험으로 얻기 어려운 표면(surface) 구조를 연구하였다. MD 시뮬레이션은 유리 표면의 화학조성과 분자수준 구조가 bulk의 것과 매우 상이한 결과를 보여준다. 본 연구의 MD 시뮬레이션 결과는 화학조성에 따른 유리 용해도(특히 초기 용해과정)는 bulk 구조의 변화보다 유리 표면구조의 변화에 의해 크게 좌우될 수 있다는 표면구조에 대한 이해의 중요성을 역설한다.

Keywords

References

  1. Afify, N.D. and Mountjoy, G. (2009) Molecular-dynamics modeling of $Eu^{3+}$-ion clustering in $SiO_2$ glass. Physical Review B, 79, 024202. https://doi.org/10.1103/PhysRevB.79.024202
  2. Cailleteau, C., Angeli, F., Devreux, F., Gin, S., Jestin, J., Jollivet, P., and Spalla, O. (2008) Insight into silicate-glass corrosion mechanisms. Nature Materials, 7, 978-983. https://doi.org/10.1038/nmat2301
  3. Criscenti, L.J., Schultz, P.A., Steefel, C., Zapol, P., and Bourg, I. (2011) Progress toward bridging from atomistic to continuum modeling to predict nuclear waste glass dissolution. Sandia Report, SAND 2011-8250.
  4. Cygan, R.T. and Kubicki, J.D. (2001) Molecular Modeling Theory: Applications in the Geosciences, Reviews in Mineralogy and Geochemistry, Vol. 42, Mineralogical Society of America, Washington, DC, p. 531.
  5. Dell, W.J., Bray, P.J., and Xiao, S.Z. (1983) $^{11}BNMR$-studies and structural modeling of $Na_2O-B_2O_3-SiO_2$ glasses of high soda content. Journal of Non-Crystalline Solids, 58, 1-16. https://doi.org/10.1016/0022-3093(83)90097-2
  6. Downs, R.T., Yang, H., Hazen, R.M., Finger, L.W., and Prewitt, C.T. (1999) Compressibility mechanisms of alkali feldspars: New data from reedmergnerite. American Mineralogist, 84, 333-340.
  7. Du L.S. and Stebbins J.F. (2005) Network connectivity in aluminoborosilicate glasses: A high-resolution $^{11}B$, $^{27}Al$ and $^{17}O$ NMR study. Journal of Non-Crystalline Solids, 351, 3508-3520. https://doi.org/10.1016/j.jnoncrysol.2005.08.033
  8. Effenberger, H., Lengauer, C.L., and Parthe, E. (2001) Trigonal $B_2O_3$ with higher space-group symmetry: Restuls of are evaluation. Monatshefte fur Chemie, 132, 1515-1517. https://doi.org/10.1007/s007060170008
  9. Feuston, B.P. and Garofalini, S.H. (1989) Topological and bonding defects in vitreous silica surfaces. Journal of Chemical Physics, 91, 564-570. https://doi.org/10.1063/1.457440
  10. Frenkel, D. and Smit, B. (2002) Understanding Molecular Simulation: From Algorithms to Applications (2nd ed.). Academic, SanDiego, CA.
  11. Frugier, P., Gin, S., Minet, Y., Chave, T., Bonin, B., Godon, N., Lartigue, J.E., Jollivet, P., Ayral, A., De Windt, L., and Santarini, G. (2008) SON68 nuclear glass dissolution kinetics: Current state of knowledge and basis of the new GRAAL model. Journal of Nuclear Materials, 380, 8-21. https://doi.org/10.1016/j.jnucmat.2008.06.044
  12. Gin, S., Ribet, I., and Couillard, M. (2001) Role and properties of the gel formed during nuclear glass alteration: importance of gel formation conditions. Journal of Nuclear Materials 298, 1-10. https://doi.org/10.1016/S0022-3115(01)00573-6
  13. Grambow, B. and Muller, R. (2001) First-order dissolution rate law and the role of surface layers in glass performance assessment. Journal of Nuclear Materials, 298, 112-124. https://doi.org/10.1016/S0022-3115(01)00619-5
  14. Grimley, D.I., Wright, A.C., and Sinclair, R.N. (1990) Neutron scattering from vitreous silica. Journal of Non-Crystalline Solids, 119, 49-64. https://doi.org/10.1016/0022-3093(90)90240-M
  15. Guillot, B. and Sator, N. (2007) A computer simulation study of natural silicate melts. Part I: Low pressure properties. Geochimica et Cosmochimica Acta, 71, 1249-1265. https://doi.org/10.1016/j.gca.2006.11.015
  16. Harrison, M.T., Dunnett, B.F., Morgan, S., Scales, C.R., and Small, J.S. (2009) International research on vitrified HLW long-term behaviour: state of the art. National Nuclear Laboratory, (09) 8864.
  17. Hockney, R.W. and Eastwood, J.W. (1988) Computer Simulation Using Particles. Taylor & Francis, New York, NY.
  18. IAEA (1997) Characterization of radioactive waste forms and packages.
  19. Iseghem, P.V. (2012) Corrosion issues of radioactive waste packages in geological disposal systems, in: Feron, D. (Ed.), Nucelar Corrosion Science and Technology. Woodhead Publishing Limited, Cambridge, UK, pp. 939-987.
  20. Jallot, E., Benhayoune, H., Kilian, L., Josset, Y., and Balossier, G. (2001) An original method to assess short-term physicochemical reactions at the periphery of bioactive glass particles in biological fluids. Langmuir, 17, 4467-4470. https://doi.org/10.1021/la001669m
  21. Kieu, L.H., Delaye, J.M., Cormier, L., and Stolz, C. (2011) Development of empirical potentials for sodium borosilicate glass systems. Journal of Non-Crystalline Solids, 357, 3313-3321. https://doi.org/10.1016/j.jnoncrysol.2011.05.024
  22. Lutze, W. (1988) Silicate glasses in: Lutze, W., Ewing, R.C. (Eds.), Radioactive Wasteform for the Future. North Holland, Amsterdam, pp. 1-192.
  23. Mozzi, R.L. and Warren, B.E. (1969) Structure of vitreous silica. Journal of Applied Crystallography, 2, 164-172. https://doi.org/10.1107/S0021889869006868
  24. Pedone, A. (2009) Properties Calculations of Silica-Based Glasses by Atomistic Simulations Techniques: A Review. Journal of Physical Chemistry C, 113, 20773-20784. https://doi.org/10.1021/jp9071263
  25. Pierce, E.M., Reed, L.R., Shaw, W.J., McGrail, B.P., Icenhower, J.P., Windisch, C.F., Cordova, E.A., and Broady, J. (2010) Experimental determination of the effect of the ratio of B/Al on glass dissolution along the nepheline ($NaAlSiO_4$)-malinkoite ($NaBSiO_4$) join. Geochimica et Cosmochimica Acta, 74, 2634-2654. https://doi.org/10.1016/j.gca.2009.09.006
  26. Plimpton, S. (1995) Fast parallel algorithms for short-range molecular-dynamics. Journal of Computational Physics, 117, 1-19. https://doi.org/10.1006/jcph.1995.1039
  27. Tilocca, A. (2010) Sodium migration pathways in multi-component silicate glasses: Car-Parrinello molecular dynamics simulations. Journal of Chemical Physics, 133, 014701. https://doi.org/10.1063/1.3456712
  28. Tilocca, A. and Cormack, A.N. (2009) Surface Signatures of Bioactivity: MD Simulations of 45S and 65S Silicate Glasses. Langmuir, 26, 545-551.
  29. Windisch, C.F., Pierce, E.M., Burton, S.D., and Bovaird, C.C. (2011) Deep-UV Raman spectroscopic analysis of structure and dissolution rates of silica-rich sodium borosilicate glasses. Journal of Non-Crystalline Solids, 357, 2170-2177. https://doi.org/10.1016/j.jnoncrysol.2011.02.046
  30. Yun, Y.H. and Bray, P.J. (1978) Nuclear magnetic-resonance studies of glasses in system $Na_2O-B_2O_3-SiO_2$. Journal of Non-Crystalline Solids, 27, 363-380. https://doi.org/10.1016/0022-3093(78)90020-0

Cited by

  1. Development of effective empirical potentials for molecular dynamics simulations of the structures and properties of boroaluminosilicate glasses vol.453, 2016, https://doi.org/10.1016/j.jnoncrysol.2016.09.021
  2. First-Principles Study of Hydrolysis Reaction Barriers in a Sodium Borosilicate Glass vol.4, pp.4, 2013, https://doi.org/10.1111/ijag.12052
  3. Topography and Mechanical Property Mapping of International Simple Glass Surfaces with Atomic Force Microscopy vol.7, 2014, https://doi.org/10.1016/j.mspro.2014.10.028
  4. Modeling Interfacial Glass-Water Reactions: Recent Advances and Current Limitations vol.5, pp.4, 2014, https://doi.org/10.1111/ijag.12077
  5. Surface structures of sodium borosilicate glasses from molecular dynamics simulations vol.100, pp.6, 2017, https://doi.org/10.1111/jace.14654
  6. Effects of system size and cooling rate on the structure and properties of sodium borosilicate glasses from molecular dynamics simulations vol.148, pp.2, 2018, https://doi.org/10.1063/1.5007083