• Title/Summary/Keyword: Interface modeling

Search Result 928, Processing Time 0.031 seconds

A Study on the Electrical Circuit Model of the Electrode/Electrolyte Interface for Improving Electrochemical Impedance Fitting (전기화학적 임피던스 Fitting 개선을 위한 전극/전해질 계면의 전기회로 모델 연구)

  • Chang, Jong-Hyeon;Pak, Jung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1087-1091
    • /
    • 2007
  • Exact impedance modeling of the electrode/electrolyte interface is important in bio-signal sensing electrode development. Therefore, the investigation of the equivalent circuit models for the interface has been pursued for a long time by several researchers. Previous circuit models fit the experimental results in limited conditions such as frequency range, type of electrode, or electrolyte. This paper describes a new electrical circuit model and its capability of fitting the experimental results. The proposed model consists of three resistors and two constant phase elements. Electrochemical impedance spectroscopy was used to characterize the interface for Au, Pt, and stainless steel electrode in 0.9% NaCl solution. Both the proposed model and the previous model were applied to fit the measured impedance results for comparison. The proposed model fits the experimental data more accurately than other models especially at the low frequency range, and it enables us to predict the impedance at very low frequency range, including DC, using the proposed model.

Design and fabrication of a 2D haptic interface apparatus and the realization of a virtual air-hockey system using the device (2D 햅틱 인터페이스 장치 설계 및 이를 이용한 가상 에어하키 시스템 구현)

  • Back, Jong-Won;Kang, Ji-Min;Yong, Ho-Joong;Choi, Dae-Sung;Jang, Tae-Jeong
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.78-80
    • /
    • 2005
  • Haptic interface apparatus is the device which can offer users virtual reality not only by visualization of virtual space but also by force or tactile feedback. In this paper, we designed and fabricated a 2D haptic interface device that can be used for various purposes, and implemented a virtual air-hockey system that users can easily find in game rooms. By suitable modeling and haptic rendering, users can feel the impact and the reaction force with his/her hand holding the handle through 2D haptic interface device when he/she hit an air-hockey puck with the handle. Through the trial demonstration. we observed the reasonable effect of direction and speed of a ball like doing in reality.

  • PDF

A study on analysis of interfacial breakdown properties with variable temperalure in straight cable Joint modeling EPGXY/EPOM interface (온도에 따른 케이블 직선 접속재 모델링 EPOXY/EPDM 계면의 파괴 특성에 관한 연구)

  • 배덕권;정인재;김상걸;정일형;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.532-535
    • /
    • 1999
  • In power cable joints, the interfaces of two different dielectric materials are inevitable. In addition, the interfacial breakdown between two internal dielectric surfaces represents one of the major causes of failure for power cable joints. We chose epoxy/EPDM interface, one of the interface in cable joints, and investigate dielectric interfacial breakdown phenomenon. First, design specimen with Flux 2D. Second, find interface condition which has high dielectric strength. Third, investigate interfacial breakdown properties with variable temperature.

  • PDF

An advanced software interface to make OpenSees for thermal analysis of structures more user-friendly

  • Seong-Hoon Jeong;Ehsan Mansouri;Nadia Ralston;Jong-Wan Hu
    • Steel and Composite Structures
    • /
    • v.51 no.2
    • /
    • pp.127-138
    • /
    • 2024
  • In this paper, structural behavior under fire conditions is comprehensively examined, and a novel software interface for testing interfaces efficiently is developed and validated. In order to accurately assess the response of structures to fire scenarios, advanced simulation techniques and modeling approaches are incorporated into the study. This interface enables accurate heat transfer analysis and thermo-mechanical simulations by integrating software tools such as CSI ETABS, CSI SAP2000, and OpenSees. Heat transfer models can be automatically generated, simulation outputs processed, and structural responses interpreted under a variety of fire scenarios using the proposed technique. As a result of rigorous testing and validation against established methods, including Cardington tests on scales and hybrid simulation approaches, the software interface has been proven to be effective and accurate. The analysis process is streamlined by this interface, providing engineers and researchers with a robust tool for assessing structural performance under fire conditions.

Design of Dialogue Management System for Home Network Control (홈네트워크 제어를 위한 대화관리시스템 설계)

  • Kim, Hyun-Jeong;Eun, Ji-Hyun;Chang, Du-Seong;Choi, Joon-Ki;Koo, Myung-Wan
    • Proceedings of the KSPS conference
    • /
    • 2006.11a
    • /
    • pp.109-112
    • /
    • 2006
  • This paper presents a dialogue interface using the dialogue management system as a method for controlling home appliances in Home Network Services. In order to realize this type of dialogue interface, we first investigated the user requirements for Home Network Services by analyzing the dialogues entered by users. Based on the analysis, we were able to extract 15 user intentions and 22 semantic components. In our study, example dialogues were collected from WOZ (Wizard-of-OZ) environment to implement a reasoning model for generating meaningful responses for example-based dialogue modeling technique. An overview of the Home Network Control System using proposed dialogue interface will be presented. Lastly, we will show that the Dialogue Management System trained with our collected dialogues behaves properly to achieve its task of controlling Home Network appliances by going through the steps of natural language understanding, response reasoning, response generation.

  • PDF

An Integrated Modeling Methodology Based on Object-oriented IDEF (Application of the CIMS for Ship Production) (객체지향 IDEF 기반의 통합모형화 방법론 : 조선 CIMS 분야 사례연구)

  • Hwang, Sung-Ryoung;Moon, Chi-Ung;Kim, Jae-Gyun;Jang, Gil-Sang
    • Asia pacific journal of information systems
    • /
    • v.9 no.3
    • /
    • pp.47-73
    • /
    • 1999
  • Nowadays, the modeling of information systems have been enabled by various models and methodologies that are used for different purposes and perspectives upon the systems. The integrated modeling methodology that integrates these models and methodologies has become important concerns in system integration such as CIM and PDM. The primary objective of this paper is to propose a comprehensive integrated modeling methodology that integrates the OOIDEFO function model, OOIDEFO information model, node model, user interface model, and organization model for an effective analysis, design and implementation for system integration. This methodology covers the generic requirements of modeling methodology such as graphical notations, modeling processes, and abstraction mechanisms. Also, this methodology uses an 00 paradigm throughout the entire systems development life cycle. In order to prove the consistency and efficiency of the proposed methodology, the CIMS for ship production is modeled and prototyped.

  • PDF

WeblME: An Web-based Integrated Modeling Environment for Multi-facetted Model Representation and Management

  • Kim, Hyoung-Do;Kim, Jong-Woo;Park, Sung-Joo
    • Management Science and Financial Engineering
    • /
    • v.5 no.1
    • /
    • pp.27-49
    • /
    • 1999
  • WebME is an Web-based integrated modeling environment that implements a multi-facetted modeling approach to mathematical model representation and management. Key features of WebME include the following: (i) sharing of modeling knowledge on the Web, (ii) a user-friendly interface for creating, maintaining, and solving models, (iii) independent management of mathematical models from conceptual models, (iv) object-oriented conceptual blackboard concept, (v) multi-facetted mathematical modeling modeling, and (vi) declarative representation of mathematical knowledge. This paper presents details of design and implementation issues that were encountered in the development of WebME.

  • PDF

CASE Tool을 이용한 Safety Critical 소프트웨어 개발 방법론

  • 김장열;권기춘
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.446-450
    • /
    • 1996
  • 본 논문은 Computer Aided Software Engineering (CASE) Tool을 이용할 경우의 Safety Critical 소프트웨어 개발 방법론인 구조적 분석 및 구조적 설계 모델링 방법론을 Teamwork CASE tool의 예를 중심으로 제안하고자 한다. 제시된 사례는 NSIS(Nuclear Safety Information System)으로서 Essential Modeling과 Implementation Modeling을 제시하였는데 Teamwork CASE 환경하에서의 분석 및 설계 절차, 지침 등을 제시하였다. Essential Modeling에서는 NSIS의 MMIS 분석범위 및 External Interface를 제시하는 환경 모델(Environmental Model)과 MMIS의 기능을 계층구조적으로 분할하는 행위모델링(Behaviroal Modeling)을 각각 Context Diagram과 Data Flow Diagram (DFD)으로 그 과정을 제시하였다. Implementation Modeling에서는 Essential Modeling으로 부터 나온 결과물을 토대로 Boss Rule, Transform Rule과 Transaction Rule 등을 거쳐 NSIS MMIS의 설계 근간이 되는 Structured Chart(SC)를 제시하였다. 본 논문에서 제시된 모델링 방법론을 통하여 Safety Critical 소프트웨어 개발시 Teamwork CASE Tool을 활용할 수 있음과 동시에 분실 및 설계의 일치성을 통하여 Safety Critical 소프트웨어의 안전성 확립과 품질보증 목표에 기여할 수 있다.

  • PDF

Non-uniform virtual material modeling on contact interface of assembly structure with bolted joints

  • Cao, Jianbin;Zhang, Zhousuo;Yang, Wenzhan;Guo, Yanfei
    • Structural Engineering and Mechanics
    • /
    • v.72 no.5
    • /
    • pp.557-568
    • /
    • 2019
  • Accurate modeling of contact interface in bolted joints is crucial in predicting the dynamic behavior for bolted assemblies under external load. This paper presents a contact pressure distribution based non-uniform virtual material method to describe the joint interface of assembly structure, which is connected by sparsely distributed multi-bolts. Firstly, the contact pressure distribution of bolted joints is obtained by the nonlinear static analysis in the finite element software ANSYS. The contact surface around bolt hole is divided into several sub-layers, and contact pressure in each sub-layer is thought to be evenly. Then, considering multi-asperity contact at the micro perspective, the relationship between contact pressure and interfacial virtual material parameters for each sub-layer is established by using the fractal contact theory. Finally, an experimental platform for the dynamic characteristics testing of a beam lap structure with double-bolted joint is constructed to validate the efficiency of proposed method. It is found that the theoretical results are in good agreement with experimental results by impact response in both time- and frequency-domain, and the relative errors of the first four natural frequencies are less than 1%. Furthermore, the presented model is used to examine the effect of rough contact surface on dynamic characteristics of bolted joint.

Modeling of CNTs and CNT-Matrix Interfaces in Continuum-Based Simulations for Composite Design

  • Lee, Sang-Hun;Shin, Kee-Sam;Lee, Woong
    • Korean Journal of Materials Research
    • /
    • v.20 no.9
    • /
    • pp.478-482
    • /
    • 2010
  • A series of molecular dynamic (MD), finite element (FE) and ab initio simulations are carried out to establish suitable modeling schemes for the continuum-based analysis of aluminum matrix nanocomposites reinforced with carbon nanotubes (CNTs). From a comparison of the MD with FE models and inferences based on bond structures and electron distributions, we propose that the effective thickness of a CNT wall for its continuum representation should be related to the graphitic inter-planar spacing of 3.4${\AA}$. We also show that shell element representation of a CNT structure in the FE models properly simulated the carbon-carbon covalent bonding and long-range interactions in terms of the load-displacement behaviors. Estimation of the effective interfacial elastic properties by ab initio simulations showed that the in-plane interfacial bond strength is negligibly weaker than the normal counterpart due to the nature of the weak secondary bonding at the CNT-Al interface. Therefore, we suggest that a third-phase solid element representation of the CNT-Al interface in nanocomposites is not physically meaningful and that spring or bar element representation of the weak interfacial bonding would be more appropriate as in the cases of polymer matrix counterparts. The possibility of treating the interface as a simply contacted phase boundary is also discussed.