• Title/Summary/Keyword: Interface inductor

Search Result 8, Processing Time 0.02 seconds

Analysis and Design of the Interface Inductor and the DC Side Capacitor in a STATCOM with Phase and Amplitude Control Considering the Stability of the System

  • Zhao, Guopeng;Han, Minxiao;Liu, Jinjun
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.193-200
    • /
    • 2012
  • Previous publications regarding the design and specifications of the interface inductor and the DC side capacitor for a STATCOM usually deal with the interface inductor and the DC side capacitor only. They seldom pay attention to the influences of the interface inductor and capacitor on the performance of a STATCOM system. In this paper a detailed analysis of influence of the interface inductor and the DC side capacitor on a STATCOM system and the corresponding design considerations is presented. Phase and amplitude control is considered as the control strategy for the STATCOM. First, a model of a STATCOM system is carried out. Second, through frequency domain methods, such as transfer functions and Bode plots, the influence of the interface inductor and the DC side capacitor on the stability and filtering characteristics of the STATCOM are extensively investigated. Third, according to this analysis, the design considerations based on the phase margin for the interface inductor and the DC side capacitor are discussed, which leads to parameters that are different from those of the traditional design.

TFT LCD 용 Power Inductor Full Automation Winding/Welding System 개발

  • 이우영;진경복;김경수
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2004.05a
    • /
    • pp.154-158
    • /
    • 2004
  • Power inductor is usually used in the field of the power circuit of a cellular phone, TFT LCD module etc.. This paper presents the development process of Power Inductor Full Automation Winding/Welding System for TFT LCD. This process, the process algorithm, high precision welding current control, design of welding head, high speed, high precision feeding mechanism, and user interface process control program technologies are included.

  • PDF

A Study on Determining the Size of the Interface Inductor for Grid-Connected Micro-Sources (Micro-Source의 계통 연계용 인덕터 크기 선정에 관한 연구)

  • Son, Kwang-Myung;Kim, Young-Seob
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.6
    • /
    • pp.52-58
    • /
    • 2005
  • The concept of the Micro-Grid comprising Micro-Sources supplying both heat and power ranging from several [KW] to 1[MW] to local customers is proposed by CERTS(Consortium for Electric Reliability Technology Solutions). Micro-Sources adopt environmentally friendly and reliable power sources such as Fuel-Cell and Micro-Turbines. Micro-Sources adopt voltage source inverter with AC grid system in order to provide independent real and reactive power control for premium power quality. Thus Micro-Source needs series inductance for interfacing with AC grid system. With this reason, we propose a technique that can decide the optimal size of the inductor for effective transfer of the power into the grid.

High Boost Converter Using Voltage Multiplier (배압회로를 이용한 고승압 컨버터)

  • Baek Ju-Won;Kim Jong-Hyun;Ryoo Myung-Hyo;Yoo Dong-Wook;Kim Jong-Soo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.8
    • /
    • pp.416-422
    • /
    • 2006
  • With the increasing demand for renewable energy, distributed power included in fuel cells have been studied and developed as a future energy source. For this system, a power conversion circuit is necessary to interface the generated power to the utility. In many cases, a high step-up dc/dc converter is needed to boost low input voltage to high voltage output. Conventional methods using cascade dc/dc converters cause extra complexity and higher cost. The conventional topologies to get high output voltage use flyback dc/dc converters. They have the leakage components that cause stress and loss of energy that results in low efficiency. This paper presents a high boost converter with a voltage multiplier and a coupled inductor. The secondary voltage of the coupled inductor is rectified using a voltage multiplier and series-connected with the boost voltage of primary voltage of the coupled inductor. Therefore, high boost voltage is obtained with low duty cycle. Theoretical analysis and experimental results verify the proposed solutions using a 300W prototype.

A Study of Interface between Photovoltaic System and Utility Line using a Current-Source PWM Inverter based on Buck-boost topology (Buck-Boost 형태의 전류형 PWM 인버터를 이용한 태양광 발전과 계통연계에 관한 연구)

  • 주성용;양근령;강필순;김철우
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.5
    • /
    • pp.36-42
    • /
    • 2003
  • This paper presents a new current-source PWM inverter based on Buck-boost configuration to interface between photovoltaic system and utility line. Proposed inverter is consisted by two set of buck-boost topology, and the input inductor is designed to be operated on the discontinuous current conduction mode. So high power factor can be achieved without additional input CtUTent controller. As a result, overall system has simple structure, and it can obtain higher ac output rms voltage than the terminal voltage of the photovoltaic system without additional boosting procedure. The operational modes are theoretically analyzed, and then the validity of the proposed system was verified through simulation and experimental results using a prototype.

Interface between Photovoltaic System and Utility Line using Current-Source PWM Inverter (전류원형 PWM 인버터를 이용한 태양광 시스템과 계통 연계를 위한 연구)

  • Kang, Feel-Soon;Park, Sung-Jun;Park, Han-Woong;Kim, Cheul-U
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.57-61
    • /
    • 2002
  • This paper presents a current-source-inverter based on a buck-boost configuration and its application for residential photovoltaic system. The proposed circuit has five switches. Among them, only one switch acts as chopping, and the other determine the polarity of output; therefore, it can reduce the switching loss. Because the input inductor current is operated on the discontinuous conduction mode, high power factor can be achieved without additional input current controller. So the overall system shows a simple structure. The operational modes are analysed in depth, and then it was verified through the experimental results using a 150 W prototype.

  • PDF

Comparative Analysis and Performance Evaluation of New Low-Power, Low-Noise, High-Speed CMOS LVDS I/O Circuits (저 전력, 저 잡음, 고속 CMOS LVDS I/O 회로에 대한 비교 분석 및 성능 평가)

  • Byun, Young-Yong;Kim, Tae-Woong;Kim, Sam-Dong;Hwang, In-Seok
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.2
    • /
    • pp.26-36
    • /
    • 2008
  • Due to the differential and low voltage swing, Low Voltage Differential Signaling(LVDS) has been widely used for high speed data transmission with low power consumption. This paper proposes new LVDS I/O interface circuits for more than 1.3 Gb/s operation. The LVDS receiver proposed in this paper utilizes a sense amp for the pre-amp instead of a conventional differential pre-amp. The proposed LVDS allows more than 1.3 Gb/s transmission speed with significantly reduced driver output voltage. Also, in order to further improve the power consumption and noise performance, this paper introduces an inductance impedance matching technique which can eliminate the termination resistor. A new form of unfolded impedance matching method has been developed to accomplish the impedance matching for LVDS receivers with a sense amplifier as well as with a differential amplifier. The proposed LVDS I/O circuits have been extensively simulated using HSPICE based on 0.35um TSMC CMOS technology. The simulation results show improved power gain and transmission rate by ${\sim}12%$ and ${\sim}18%$, respectively.

Control and Analysis of an Integrated Bidirectional DC/AC and DC/DC Converters for Plug-In Hybrid Electric Vehicle Applications

  • Hegazy, Omar;Van Mierlo, Joeri;Lataire, Philippe
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.408-417
    • /
    • 2011
  • The plug-in hybrid electric vehicles (PHEVs) are specialized hybrid electric vehicles that have the potential to obtain enough energy for average daily commuting from batteries. The PHEV battery would be recharged from the power grid at home or at work and would thus allow for a reduction in the overall fuel consumption. This paper proposes an integrated power electronics interface for PHEVs, which consists of a novel Eight-Switch Inverter (ESI) and an interleaved DC/DC converter, in order to reduce the cost, the mass and the size of the power electronics unit (PEU) with high performance at any operating mode. In the proposed configuration, a novel Eight-Switch Inverter (ESI) is able to function as a bidirectional single-phase AC/DC battery charger/ vehicle to grid (V2G) and to transfer electrical energy between the DC-link (connected to the battery) and the electric traction system as DC/AC inverter. In addition, a bidirectional-interleaved DC/DC converter with dual-loop controller is proposed for interfacing the ESI to a low-voltage battery pack in order to minimize the ripple of the battery current and to improve the efficiency of the DC system with lower inductor size. To validate the performance of the proposed configuration, the indirect field-oriented control (IFOC) based on particle swarm optimization (PSO) is proposed to optimize the efficiency of the AC drive system in PHEVs. The maximum efficiency of the motor is obtained by the evaluation of optimal rotor flux at any operating point, where the PSO is applied to evaluate the optimal flux. Moreover, an improved AC/DC controller based Proportional-Resonant Control (PRC) is proposed in order to reduce the THD of the input current in charger/V2G modes. The proposed configuration is analyzed and its performance is validated using simulated results obtained in MATLAB/ SIMULINK. Furthermore, it is experimentally validated with results obtained from the prototypes that have been developed and built in the laboratory based on TMS320F2808 DSP.