• Title/Summary/Keyword: Interface delamination

Search Result 137, Processing Time 0.037 seconds

Lifetime Performance of EB-PVD Thermal Barrier Coatings with Coating Thickness in Cyclic Thermal Exposure

  • Lu, Zhe;Lee, Seoung Soo;Lee, Je-Hyun;Jung, Yeon-Gil
    • Korean Journal of Materials Research
    • /
    • v.25 no.10
    • /
    • pp.571-576
    • /
    • 2015
  • The effects of coating thickness on the delamination and fracture behavior of thermal barrier coating (TBC) systems were investigated with cyclic flame thermal fatigue (FTF) and thermal shock (TS) tests. The top and bond coats of the TBCs were prepared by electron beam-physical vapor deposition and low pressure plasma spray methods, respectively, with a thickness ratio of 2:1 in the top and bond coats. The thicknesses of the top coat were 200 and $500{\mu}m$, and those of the bond coat were 100 and $250{\mu}m$. FTF tests were performed until 1140 cycles at a surface temperature of $1100^{\circ}C$ for a dwell time of 5 min. TS tests were also done until more than 50 % delamination or 1140 cycles with a dwell time of 60 min. After the FTF for 1140 cycles, the interface microstructures of each TBC exhibited a sound condition without cracking or delamination. In the TS, the TBCs of 200 and $500{\mu}m$ were fully delaminated (> 50 %) within 171 and 440 cycles, respectively. These results enabled us to control the thickness of TBC systems and to propose an efficient coating in protecting the substrate in cyclic thermal exposure environments.

Thermomechanical Analysis of Functionally Gradient Al-$SiC_{p}$ Composite for Electronic Packaging (전자패키지용 경사조성 Al-$SiC_{p}$ 복합재료의 열 . 기계적 변형특성 해석)

  • 송대현;최낙봉;김애정;조경목;박익민
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.175-183
    • /
    • 2000
  • The internal residual stresses within the multilayered structure with shan interface induced by the difference in thermal expansion coefficient between the materials of adjacent layers often provide the source of failure such as delamination of interfaces and etc. Recent development of the multilayered structure with functionally graded interface would be the solution to prevent this kind of failure. However a systematic thermo-mechanical analysis is needed fur the customized structural design of multilayered structure. In this study, theoretical model for the thermo-mechanical analysis is developed for multilayered structures of the Al-$SiC_p$ functionally graded composite for electronic packaging. The evolution of curvature and internal stresses in response to temperature variations is presented for the different combinations of geometry. The resultant analytical solutions are used for the optimal design of the multilayered structures with functionally graded interface as well as with sharp interface.

  • PDF

Application of Stress Optimization for Preventing the Delamination of the Plastic IC Package in Reflow Soldering Process (리플로 납땜과정에서 플라스틱 IC 패키지의 박리방지를 위한 응력최적설계의 적용)

  • Kim, Geun-Woo;Lee, Kang-Yong;Kim, Ok-Whan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.709-716
    • /
    • 2004
  • In order to prevent the interface delamination of an plastic IC package in the infrared (IR) soldering process, we tried to reduce stress by parameterization, sensitivity analysis and unconstraint optimization. The design variables of dimensions and material properties are determined among all the possible variables from the parametric study. Their optimized values are determined by applying the unconstraint optimization to the parameterized IC package. The maximum von-Mises stress value decreases greatly by optimum design.

Performance degradation of SOFC caused by increase of polarization resistance for the cathode during long-term test (공기극 분극 저항 증가에 따른 SOFC 단전지 성능 감소에 관한 연구)

  • Park, Kwang-Jin;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.349-352
    • /
    • 2009
  • In this study, the relation between the performance degradation of SOFC single cell and the increase of polarization resistance for the cathode is investigated. $Pr_{0.3}Sr_{0.7}Co_{0.3}Fe_{0.7}O_3$(PSCF3737, $19.4{\times}10^{-6}K^{-1}$) and $Gd_{0.1}Ce_{0.9}O_2$ (CGO91, $12{\times}10^{-6}K^{-1}$) are used as a cathode and an electrolyte, respectively. The polarization resistance of cathode is increased due to the delamination caused by thermal expansion coefficient difference. The voltage drop with 10%/1000h decline rate occurs during long-term, when the interface between the cathode and the electrolyte is delaminated due to TEC difference.

  • PDF

Flexural Behavior of Reinforced Concrete Beams Strengthened by CFRP Plates (탄소섬유판으로 보강된 철근콘크리트 보의 휨거동해석)

  • Yang, Dong-Suk;Koh, Byung-Soon;Park, Sun-Kyu;You, Young-Chan;Choi, Ki-Sun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.243-246
    • /
    • 2005
  • This paper focuses on the flexural behavior of RC beams externally reinforced using Carbon Fiber Reinforced Plastics plates (CFRP). A non-linear finite element (FE) analysis is proposed in order to complete the experimental analysis of the flexural behaviour of the beams. This paper is a part of a complete program aiming to set up design formulate to predict the strength of CFRP strengthened beams, particularly when premature failure through plates-end shear or concrete cover delamination occurs. An elasto-plastic behaviour is assumed for reinforced concrete and interface elements are used to model the bond and slip.

  • PDF

A Study on SEM Observations of Low Temperature Degradation in Zirconia Dental Ceramics (저온열화에 따른 치과용 지르코니아의 전자현미경 관찰 연구)

  • Lee, Jung-Hwan;Joo, Kyu-Ji;Ahn, Jae-Seok
    • Journal of Technologic Dentistry
    • /
    • v.33 no.1
    • /
    • pp.15-23
    • /
    • 2011
  • Purpose: Thy yttria tetragonal zirconia polycrystalline(Y-TZP) is a good structural ceramic for dental restoration. But it have a problem that delamination of veneering ceramic from the Y-TZP core materials. The problem generally occur at the interface, thus this study was conducted to evaluate the interface of Y-TZP using scanning electron microscopy(SEM). Methods: To investigate this aspect, high-resolution SEM observations were made of polished and etched (HF content gel) cross-sections of the interface area. Dry and moist veneering porcelain powders were built up on the zirconia base. Results: The extent of this surface faceting is dependent upon the moisture content of the porcelain powder and the firing temperature. More moisture and higher final heating temperature accelerates the observed faceting of the Y-TZP grains at the interface to the veneering ceramic. Conclusion: These changes of the Y-TZP grains indicate that destabilization of the tetragonal phase of zirconia occurs at the interface during veneering with ceramic. It may result in a reduction of the stability of the zirconia and interface.

Stress Analysis and Lead Pin Shape Design in PGA (Pin Grid Array) Package (PGA (Pin Grid Array) 패키지의 응력해석 및 Lead Pin 형상설계)

  • Cho, Seung-Hyun;Choi, Jin-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.2
    • /
    • pp.29-33
    • /
    • 2011
  • Research about the geometry design of lead pin was carried based on the normal or shear stress of the interface between a lead pin and a PCB in terms of delamination failure. The taguchi method with four design factors of three levels and FEA(Finite element Analysis) are carried under $20^{\circ}$ bending and 50 ${\mu}m$ tension of lead pin. The contact width, d2, between head round and copper pad in PCB is the highest affection factor among design factors by analysis of contribution analysis. Equivalent von Mises stress of 18.7% reduction design is obtained by the parameter design of the taguchi method. Maximum normal stress occurred at contact position between solder outer surface and a Cu pad in PCB. Also, maximum shear stress happened at contact position between solder outer surface and SR layer of PCB. From these calculated results, delamination of the PGA package may be occurred from outer interface of solder to inner interface of solder.

Effect of Pre-Heat Treatment on Bonding Properties in Ti/Al/STS Clad Materials (Ti/Al/STS 클래드재의 접합특성에 미치는 예비 열처리의 영향)

  • Bae, Dong-Hyun;Jung, Su-Jung;Cho, Young-Rae;Jung, Won-Sup;Jung, Ho-Shin;Kang, Chang-Yong;Bae, Dong-Su
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.9
    • /
    • pp.573-579
    • /
    • 2009
  • Titanium/aluminum/stainless steel(Ti/Al/STS) clad materials have received much attention due to their high specific strength and corrosion-resisting properties. However, it is difficult to fabricate these materials, because titanium oxide is easily formed on the titanium surface during heat treatment. The aim of the present study is to derive optimized cladding conditions and thereupon obtain the stable quality of Ti/Al/STS clad materials. Ti sheets were prepared with and without pre-heat treatment and Ti/Al/STS clad materials were then fabricated by cold rolling and a post-heat treatment process. Microstructure of the Ti/Al and STS/Al interfaces was observed using a Scanning Electron Microscope(SEM) and an Energy Dispersed X-ray Analyser(EDX) in order to investigate the effects of Ti pre-heat treatment on the bond properties of Ti/Al/STS clad materials. Diffusion bonding was observed at both the Ti/Al and STS/Al interfaces. The bonding force of the clad material with non-heat treated Ti was higher than that with pre-heat treated Ti before the cladding process. The bonding force decreased rapidly beyond $400^{\circ}C$, because the formed Ti oxide inhibited the joining process between Ti and Al. Bonding forces of STS/Al were lower than those of Ti/Al, because brittle $Fe_3Al$, $Al_3Fe$ intermetallic compounds were formed at the interface of STS/Al during the cladding process. In addition, delamination of the clad material with pre-heat treated Ti was observed at the Ti/Al interface after a cupping test.

Beam Tests for Static and Fatigue Interface Shear Strength between Old and Njew Concretes (신구콘크리트 계면의 전단강도 측정을 위한 정하중 및 피로하중 보실험)

  • 최동욱
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.3
    • /
    • pp.137-147
    • /
    • 1997
  • Interface shear strength of' concrete under static loading and deterioratiion of interface strength by fatigue loading in shear were experimentally investigated using composite beam test specimens. Thirteen beams were constructed. Five composite beams were tested statically until interface delaminations were observed in the static tests. Seven composite beam and one monolithically cast beam were subjected to two to three million cycles of fatigue load. Test variables were interface roughness, interface shear reinforcement, and presence of interface bond. The average interface shear strength of the composite beams with bonded-rough interface was 6, 060 kPa. No interface delamination was observed after cycling for the composite beams with bonded - rough interface and interface bond was not influenced by repeated application of the shear stress of 2.000 kPa(about 1/3 of the static interface shear strength). Smooth interface and unbonded-rough interface with shear reinforcement deteriorated under repeated shear loading.

Analysis of Chemically and Thermally Induced Residual Stresses in Polymeric Thin Film

  • Lee, Sang Soon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • This paper deals with the residual stresses developed in an epoxy film deposited on Si wafer. First, chemically induced residual stresses due to the volumetric shrinkage in cross-linking resins during polymerization are treated. The curvature measurement method is employed to investigate the residual stresses. Then, thermally induced stresses are investigated along the interface between the epoxy film and Si wafer. The boundary element method is employed to investigate the whole stresses in the film. The singular stress is observed near the interface corner. Such residual stresses are large enough to initiate interface delamination to relieve the residual stresses.