• Title/Summary/Keyword: Interest of Biology

Search Result 306, Processing Time 0.029 seconds

Emerging functions for ANKHD1 in cancer-related signaling pathways and cellular processes

  • de Almeida, Bruna Oliveira;Machado-Neto, Joao Agostinho
    • BMB Reports
    • /
    • v.53 no.8
    • /
    • pp.413-418
    • /
    • 2020
  • ANKHD1 (ankyrin repeat and KH domain containing 1) is a large protein characterized by the presence of multiple ankyrin repeats and a K-homology domain. Ankyrin repeat domains consist of widely existing protein motifs in nature, they mediate protein-protein interactions and regulate fundamental biological processes, while the KH domain binds to RNA or ssDNA and is associated with transcriptional and translational regulation. In recent years, studies containing relevant information on ANKHD1 in cancer biology and its clinical relevance, as well as the increasing complexity of signaling networks in which this protein acts, have been reported. Among the signaling pathways of interest in oncology regulated by ANKHD1 are Hippo signaling, JAK/STAT, and STMN1. The scope of the present review is to survey the current knowledge and highlight future perspectives for ANKHD1 in the malignant phenotype of cancer cells, exploring biological, functional, and clinical reports of this protein in cancer.

Marine Microalgal Transgenesis: Applications to Biotechnology and Human Functional Foods

  • Kim, Young Tae
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.1 no.1
    • /
    • pp.34-39
    • /
    • 2006
  • Molecular biology and microalgal biotechnology have the potential to play a major role in improving the production efficiency of a vast variety of products including functional foods, industrial chemicals, compounds with therapeutic applications and bioremediation solutions from a virtually untapped source. Microalgae are a source of natural products and have been recently studied for biotechnological applications. Efficient genetic transformation systems in microalgae are necessary to enhance their potential to be used for human health. A microalga such as Chlarella is a eukaryotic organism sharing its metabolic pathways with higher plants. This microalga is capable of expressing, glycosylating, and correctly processing proteins which normally undergo post-translational modification. Moreover, it can be cultured inexpensively because it requires only limited amount of sunlight and carbon dioxide as energy sources. Because of these advantages, Chlarella may be of great potential interest in biotechnology as a good candidate for bioreactor in the production of pharmaceutical and industrial compounds for human functional foods. Here, we briefly discuss recent progress in microalgal transgenesis that has utilized molecular biology to produce functional proteins and bioactive compounds.

  • PDF

Study on the genotoxicity of soi1 leachate from two polluted sites in Cheongju with Tradescantia-micronuclus assay (자주달개비 미세핵 분석법을 이용한 청주공단주변 토양침출수의 유전독성 평가)

  • Kim Jin Gyu;Lee Byeong Heon;Sin Hae Sik;Lee Jin Hong
    • Proceedings of the Korea Society of Environmental Biology Conference
    • /
    • 2002.11a
    • /
    • pp.119-122
    • /
    • 2002
  • Soil contaminants are common in industrialized sites, They can affect directly soil and indirectly ground water and food. Soil mutagens and carcinogens are of great interest due to their potentially hazardous effects on human health. The aim of this study was to monitor the genotoxicity of contaminated soils, Soil leachates were collected from two polluted sites and one control site in Cheongju. Tradescantia BNL 4430 clone was used as experimental matierials. Chromosomal damages induced by soil leachates were detected by the Tradescantia-micronucleus assay. It is known from the result that Tradescantia-micronucleus assay is an excellent botanical tool for detection of biological risk due to environmental toxicants.

  • PDF

Developmental Programming by Perinatal Glucocorticoids

  • Hong, Jun Young
    • Molecules and Cells
    • /
    • v.45 no.10
    • /
    • pp.685-691
    • /
    • 2022
  • Early-life environmental factors can have persistent effects on physiological functions by altering developmental procedures in various organisms. Recent experimental and epidemiological studies now further support the idea that developmental programming is also present in mammals, including humans, influencing long-term health. Although the mechanism of programming is still largely under investigation, the role of endocrine glucocorticoids in developmental programming is gaining interest. Studies found that perinatal glucocorticoids have a persistent effect on multiple functions of the body, including metabolic, behavioral, and immune functions, in adulthood. Several mechanisms have been proposed to play a role in long-term programming. In this review, recent findings on this topic are summarized and the potential biological rationale behind this phenomenon is discussed.

Review of Synaptic Plasticity (시냅스 가소성에 관한 고찰)

  • Kim, Souk-Boum;Kim, Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.13 no.1
    • /
    • pp.229-235
    • /
    • 2001
  • Clinical interest has lately been roused by evidence that comprehension of synaptic plasticity may be based on the theoretical opinion. This paper describes perception of synaptic plasticity. Especially processes of long term potentiation(LTP) and long term depression(LTD) are discussed. Recently, it is assessed to genetical parts from development of molecular biology. Therefore this review also represents aspect of molecular events of synaptic plasticity.

  • PDF

Biochemistry and structure of phosphoinositide phosphatases

  • Kim, Young Jun;Jahan, Nusrat;Bahk, Young Yil
    • BMB Reports
    • /
    • v.46 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • Phosphoinositides are the phosphorylated derivatives of phosphatidylinositol, and play a very significant role in a diverse range of signaling processes in eukaryotic cells. A number of phosphoinositide-metabolizing enzymes, including phosphoinositide-kinases and phosphatases are involved in the synthesis and degradation of these phospholipids. Recently, the function of various phosphatases in the phosphatidylinositol signaling pathway has been of great interest. In the present review we summarize the structural insights and biochemistry of various phosphatases in regulating phosphoinositide metabolism.

Metabolism and Fermentation of Clostridium acetobutylicum (Clostridium acetobutylicum의 대사와 발효)

  • 이상엽
    • KSBB Journal
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 1993
  • The acetone-butanol fermentation by C. acetobutylicum has gained increasing attention for the following reasons. First, the finite supply of petrochemical resources, combined with increasing concern over global environmental effects and the unstable nature of the price of petroleum has renewed interest in the development of fermentation technology that allows utilzation of biomass wastes for the production of alcohol. Second, it serves as excellent model system for understading the regulation and molecular biology of tightly regulated complex primary metabolism, and for applications of metabolic engineering. In this review various aspects of acetone-butanol fermentation by C. acetobutylicm including strain and fermentation characteristics, enzyme regulation, and solvent formation mechanism, and product recovery and summarized.

  • PDF

Microbial Metal Transformations

  • Gadd, Geoffrey M.
    • Journal of Microbiology
    • /
    • v.39 no.2
    • /
    • pp.83-88
    • /
    • 2001
  • There is considerable interest in how microbiological processes can affect the behaviour of metal contaminants in natural and engineered environments and their potential for bioremediation. The extent to which microorganisms can affect metal contaminants is dependent on the identity and chemical form of the metal and the physical and chemical nature of the contaminated site or substance. In general terms, microbial processes which solubilize metals increase their bioavailability and potential toxicity, whereas those that immobilize them reduce bioavailability. The balance between mobilization and immobilization varies depending on the metal, the organisms, their environment and physico-chemical conditions.

  • PDF

Lipid N-formylation Occurs During Fixation with Formalin

  • Kim, Min Jung;Lim, Heejin;Kim, Muwoong;Choi Yuri;Nguyen, Thy N.C.;Park, Seung Cheol;Kim, Kwang Pyo;Jung, Junyang;Kim, Min-Sik
    • Mass Spectrometry Letters
    • /
    • v.13 no.2
    • /
    • pp.35-40
    • /
    • 2022
  • Human tissues and organs can be preserved intact by fixation with formalin for the future analysis of biomolecules of interest. With the advances in high-throughput methods, numerous protocols have been developed and optimized to attain the most pathophysiological information out of biomolecules, including RNA and proteins, in formalin-fixed samples. However, there is no systematic study to examine the effects of formalin fixation on the lipidome of biological samples in a global fashion. In this study, we conducted a mass spectrometry-based analysis to survey the alteration in the lipidome of mice brains by fixation methods. A total of 308 lipids were quantitatively measured using triple quadrupole mass spectrometry. We found that most were unchanged after formalin fixation except for a few lipid classes such as phosphatidylethanolamine.

Broad-Spectrum Activity of Volatile Organic Compounds from Three Yeast-like Fungi of the Galactomyces Genus Against Diverse Plant Pathogens

  • Cai, Shu-Ting;Chiu, Ming-Chung;Chou, Jui-Yu
    • Mycobiology
    • /
    • v.49 no.1
    • /
    • pp.69-77
    • /
    • 2021
  • The application of antagonistic fungi for plant protection has attracted considerable interest because they may potentially replace the use of chemical pesticides. Antipathogenic activities confirmed in volatile organic compounds (VOCs) from microorganisms have potential to serve as biocontrol agents against pre- and post-harvest diseases. In the present study, we investigated Galactomyces fungi isolated from rotten leaves and the rhizosphere of cherry tomato (Lycopersicon esculentum var. cerasiforme). VOCs produced by Galactomyces fungi negatively affected the growth of phytopathogenic fungi and the survival of nematodes. Mycelial growths of all nine examined phytopathogenic fungi were inhibited on agar plate, although the inhibition was more intense in Athelia rolfsii JYC2163 and Cladosporium cladosporioides JYC2144 and relatively moderate in Fusarium sp. JYC2145. VOCs also efficiently suppressed the spore germination and mycelial growth of A. rolfsii JYC2163 on tomatoes. The soil nematode Caenorhabditis elegans exhibited higher mortality in 24 h in the presence of VOCs. These results suggest the broad-spectrum activity of Galactomyces fungi against various plant pathogens and the potential to use VOCs from Galactomyces as biocontrol agents.