Browse > Article
http://dx.doi.org/10.14348/molcells.2022.0042

Developmental Programming by Perinatal Glucocorticoids  

Hong, Jun Young (Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University)
Abstract
Early-life environmental factors can have persistent effects on physiological functions by altering developmental procedures in various organisms. Recent experimental and epidemiological studies now further support the idea that developmental programming is also present in mammals, including humans, influencing long-term health. Although the mechanism of programming is still largely under investigation, the role of endocrine glucocorticoids in developmental programming is gaining interest. Studies found that perinatal glucocorticoids have a persistent effect on multiple functions of the body, including metabolic, behavioral, and immune functions, in adulthood. Several mechanisms have been proposed to play a role in long-term programming. In this review, recent findings on this topic are summarized and the potential biological rationale behind this phenomenon is discussed.
Keywords
adaptation; developmental endocrine; developmental programming; glucocorticoids; perinatal period; stress;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kuo, T., Harris, C.A., and Wang, J.C. (2013). Metabolic function of glucocorticoid receptors in skeletal muscle. Mol. Cell. Endocrinol. 380, 79-88.   DOI
2 Lupien, S.J., McEwen, B.S., Gunnar, M.R., and Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat. Rev. Neurosci. 10, 434-445.   DOI
3 Mairesse, J., Lesage, J., Breton, C., Breant, B., Hahn, T., Darnaudery, M., Dickson, S.L., Seckl, J., Blondeau, B., Vieau, D., et al. (2007). Maternal stress alters endocrine function of the feto-placental unit in rats. Am. J. Physiol. Endocrinol. Metab. 292, E1526-E1533.   DOI
4 Neal, C.R., Jr., Weidemann, G., Kabbaj, M., and Vazquez, D.M. (2004). Effects of neonatal dexamethasone exposure on growth and neurological development in adult rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, R375-R385.   DOI
5 Nyirenda, M.J., Welberg, L.A., and Seckl, J.R. (2001). Programming hyperglycemia in rats through prenatal exposure to glucocorticoid-fetal effects or maternal influence? J. Endocrinol. 170, 653-660.   DOI
6 Bradbury, M.J., Akana, S.F., and Dallman, M.F. (1994). Roles of type I and II corticosteroid receptors in regulation of basal activity in the hypothalamopituitary-adrenal axis during the diurnal trough and the peak: evidence for a nonadditive effect of combined receptor occupation. Endocrinology 134, 1286-1296.   DOI
7 Bakker, J.M., Kavelaars, A., Kamphuis, P.J., Cobelens, P.M., van Vugt, H.H., van Bel, F., and Heijnen, C.J. (2000). Neonatal dexamethasone treatment increases susceptibility to experimental autoimmune disease in adult rats. J. Immunol. 165, 5932-5937.   DOI
8 Phillips, D.I., Barker, D.J., Fall, C.H., Seckl, J.R., Whorwood, C.B., Wood, P.J., and Walker, B.R. (1998). Elevated plasma cortisol concentrations: a link between low birth weight and insulin resistance syndrome? J. Clin. Endocrinol. Metab. 83, 757-760.
9 Barker, D.J. (2007). The origins of the developmental origins theory. J. Intern. Med. 261, 412-417.   DOI
10 Barker, D.J.P. (2002). Fetal programming of coronary heart disease. Trends Endocrinol. Metab. 13, 364-368.   DOI
11 Dalziel, S.R., Walker, N.K., Parag, V., Mantell, C., Rea, H.H., Rodgers, A., and Harding, J.E. (2005). Cardiovascular risk factors after antenatal exposure to betamethasone: 30-year follow-up of a randomised controlled trial. Lancet 365, 1856-1862.   DOI
12 Ruthsatz, K., Dausmann, K.H., Drees, C., Becker, L.I., Hartmann, L., Reese, J., Reinhardt, S., Robinson, T., Sabatino, N.M., Peck, M.A., et al. (2020). Altered thyroid hormone levels affect the capacity for temperature-induced developmental plasticity in larvae of Rana temporaria and Xenopus laevis. J. Therm. Biol. 90, 102599.   DOI
13 Schmidt, M.V. (2011). Animal models of depression and mismatch hypothesis of disease. Psychoneuroendocrinology 36, 330-338.   DOI
14 Venihaki, M., Carrigan, A., Dikkes, P., and Majzoub, J.A. (2000). Circadian rise in maternal glucocorticoids prevents pulmonary dysplasia in fetal mice with adrenal insufficiency. Proc. Natl. Acad. Sci. U. S. A. 97, 7336-7341.   DOI
15 Wang, A., Luan, H.H., and Medzhitov, R. (2019). An evolutionary perspective on immunometabolism. Science 363, eaar3932.   DOI
16 Bramlage, C.P., Schlumbohm, C., Pryce, C.R., Mirza, S., Schnell, C., Amann, K., Amstrong, V.W., Eitner, F., Zapf, A., Feldon, J., et al. (2009). Prenatal dexamethasone exposure does not alter blood pressure and nephron number in the young adult marmoset monkey. Hypertension 54, 1115-1122.   DOI
17 Catalani, A., Alema, G.S., Cinque, C., Zuena, A.R., and Casolini, P. (2011). Maternal corticosterone effects on hypothalamus-pituitary-adrenal axis regulation and behavior of the offspring in rodents. Neurosci. Biobehav. Rev. 35, 1502-1517.   DOI
18 Barbazanges, A., Piazza, P.V., Le Moal, M., and Maccari, S. (1996). Maternal glucocorticoid secretion mediates long-term effects of prenatal stress. J. Neurosci. 16, 3943-3949.   DOI
19 Catalani, A., Marinelli, M., Scaccianoce, S., Nicolai, R., Muscolo, L.A., Porcu, A., Koranyi, L., Piazza, P.V., and Angelucci, L. (1993). Progeny of mothers drinking corticosterone during lactation has lower stress-induced corticosterone secretion and better cognitive performance. Brain Res. 624, 209-215.   DOI
20 Crudo, A., Petropoulos, S., Moisiadis, V.G., Iqbal, M., Kostaki, A., Machnes, Z., Szyf, M., and Matthews, S.G. (2012). Prenatal synthetic glucocorticoid treatment changes DNA methylation states in male organ systems: multigenerational effects. Endocrinology 153, 3269-3283.   DOI
21 De Kloet, E.R., Vreugdenhil, E., Oitzl, M.S., and Joels, M. (1998). Brain corticosteroid receptor balance in health and disease. Endocr. Rev. 19, 269-301.
22 Padgett, D.A. and Glaser, R. (2003). How stress influences the immune response. Trends Immunol. 24, 444-448.   DOI
23 Bateson, P., Barker, D., Clutton-Brock, T., Deb, D., D'Udine, B., Foley, R.A., Gluckman, P., Godfrey, K., Kirkwood, T., Lahr, M.M., et al. (2004). Developmental plasticity and human health. Nature 430, 419-421.   DOI
24 de Vries, A., Holmes, M.C., Heijnis, A., Seier, J.V., Heerden, J., Louw, J., Wolfe-Coote, S., Meaney, M.J., Levitt, N.S., and Seckl, J.R. (2007). Prenatal dexamethasone exposure induces changes in nonhuman primate offspring cardiometabolic and hypothalamic-pituitary-adrenal axis function. J. Clin. Invest. 117, 1058-1067.   DOI
25 Nagano, M., Ozawa, H., and Suzuki, H. (2008). Prenatal dexamethasone exposure affects anxiety-like behavior and the neuroendocrine system in an age-dependent manner. Neurosci. Res. 60, 364-371.   DOI
26 Nyirenda, M.J., Dean, S., Lyons, V., Chapman, K.E., and Seckl, J.R. (2006). Prenatal programming of hepatocyte nuclear factor 4α in rats: a key mechanism in the fetal origins of hyperglycemia? Diabetologia 49, 1412-1420.   DOI
27 Nyirenda, M.J., Lindsay, R.S., Kenyon, C.J., Burchell, A., and Seckl, J.R. (1998). Glucocorticoid exposure during late gestation permanently programs rat hepatic phosphoenolpyruvate carboxykinase and glucocorticoid receptor expression and causes glucose intolerance in adult offspring. J. Clin. Invest. 101, 2174-2181.   DOI
28 Peckett, A.J., Wright, D.C., and Riddell, M.C. (2011). The effects of glucocorticoids on adipose tissue lipid metabolism. Metabolism 60, 1500-1510.   DOI
29 Reyes-Contreras, M., Glauser, G., Rennison, D.J., and Taborsky, B. (2019). Early life manipulation of cortisol and its receptors alters stress axis programming and social competence. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180119.   DOI
30 Reynolds, R.M., Walker, B.R., Syddall, H.E., Andrew, R., Wood, P.J., Whorwood, C.B., and Phillips, D.I. (2001). Altered control of cortisol secretion in adult men with low birth weight and cardiovascular risk factors. J. Clin. Endocrinol. Metab. 86, 245-250.
31 Zhang, T.Y., Labonte, B., Wen, X.L., Turecki, G., and Meaney, M.J. (2013). Epigenetic mechanisms for early environmental regulation of hippocampal glucocorticoid receptor gene expression in rodents and humans. Neuropsychopharmacology 38, 111-123.   DOI
32 Sugden, M.C., Langdown, M.L., Munns, M.J., and Holness, M. (2001). Maternal glucocorticoid treatment modulates placental leptin and leptin receptor expression and materno-fetal leptin physiology during late pregnancy and elicits hypertension associated with hyperleptinemia in early growth-retarded adult offspring. Eur. J. Endocrinol. 145, 529-539.
33 van de Loo, K.F., van Gelder, M.M., Roukema, J., Roeleveld, N., Merkus, P.J., and Verhaak, C.M. (2016). Prenatal maternal psychological stress, childhood asthma, and wheezing: a meta-analysis. Eur. Respir. J. 47, 133-146.   DOI
34 Weaver, I.C., Cervoni, N., Champagne, F.A., D'Alessio, A.C., Sharma, S., Seckl, J.R., Dymov, S., Szyf, M., and Meaney, M.J. (2004). Epigenetic programming by maternal behavior. Nat. Neurosci. 7, 847-854.   DOI
35 Clark, P.M., Hindmarsh, P.C., Shiell, A.W., Law, C.M., Honour, J.W., and Barker, D.J.P. (1996). Size at birth and adrenocortical function in childhood. Clin. Endocrinol. (Oxf.) 45, 721-726.   DOI
36 Sasaki, A., Nakagawa, I., and Kajimoto, M. (1982). Effect of protein nutrition throughout gestation and lactation on the growth, morbidity, and life span of rat progeny. J. Nutr. Sci. Vitaminol. (Tokyo) 28, 543-555.   DOI
37 Braun, T., Challis, J.R., Newnham, J.P., and Sloboda, D.M. (2013). Earlylife glucocorticoid exposure: the hypothalamic-pituitary-adrenal axis, placental function, and long-term disease risk. Endocr. Rev. 34, 885-916.   DOI
38 Erni, K., Shaqiri-Emini, L., La Marca, R., Zimmermann, R., and Ehlert, U. (2012). Psychobiological effects of prenatal glucocorticoid exposure in 10-year-old-children. Front. Psychiatry 3, 104.
39 Figueroa, J.P., Rose, J.C., Massmann, G.A., Zhang, J., and Acuna, G. (2005). Alterations in fetal kidney development and elevations in arterial blood pressure in young adult sheep after clinical doses of antenatal glucocorticoids. Pediatr. Res. 58, 510-515.   DOI
40 French, N.P., Hagan, R., Evans, S.F., Godfrey, M., and Newnham, J.P. (1999). Repeated antenatal corticosteroids: size at birth and subsequent development. Am. J. Obstet. Gynecol. 180, 114-121.   DOI
41 Davis, E.P., Glynn, L.M., Schetter, C.D., Hobel, C., Chicz-Demet, A., and Sandman, C.A. (2007). Prenatal exposure to maternal depression and cortisol influences infant temperament. J. Am. Acad. Child Adolesc. Psychiatry 46, 737-746.   DOI
42 Eliwa, H., Brizard, B., Le Guisquet, A.M., Hen, R., Belzung, C., and Surget, A. (2021). Adult neurogenesis augmentation attenuates anhedonia and HPA axis dysregulation in a mouse model of chronic stress and depression. Psychoneuroendocrinology 124, 105097.   DOI
43 Flanigan, C., Sheikh, A., Dunn Galvin, A., Brew, B.K., Almqvist, C., and Nwaru, B.I. (2018). Prenatal maternal psychosocial stress and offspring asthma and allergic diseases: a systematic review and meta-analysis. Clin. Exp. Allergy 48, 403-414.   DOI
44 Glucocorticoid exposure in preterm babies predicts a salivary cortisol response to immunization at four months. Pediatr. Res. 58, 1233-1237.
45 Henriksen, R., Rettenbacher, S., and Groothuis, T.G. (2011). Prenatal stress in birds: pathways, effects, functions, and perspectives. Neurosci. Biobehav. Rev. 35, 1484-1501.   DOI
46 Gilbert, S.F. (2005). Mechanisms for environmental regulation of gene expression: ecological aspects of animal development. J. Biosci. 30, 65-74. Glover, V., Miles, R., Matta, S., Modi, N., and Stevenson, J. (2005).   DOI
47 Gluckman, P.D. and Hanson, M. (2004). Living with the past: evolution, development, and patterns of disease. Science 305, 1733-1736.   DOI
48 Hanson, M.A. and Gluckman, P.D. (2014). Early developmental conditioning of later health and disease: physiology and pathophysiology? Physiol. Rev. 94, 1027-1076.   DOI
49 Hinde, K., Skibiel, A.L., Foster, A.B., Del Rosso, L., Mendoza, S.P., and Capitanio, J.P. (2015). Cortisol in the mother's milk during lactation reflects maternal life history and predicts infant temperament. Behav. Ecol. 26, 269-281.   DOI
50 Hodge, R.D., Bakken, T.E., Miller, J.A., Smith, K.A., Barkan, E.R., Graybuck, L.T., Close, J.L., Long, B., Johansen, N., Penn, O., et al. (2019). Conserved cell types with divergent features in human versus mouse cortex. Nature 573, 61-68.   DOI
51 Hong, J.Y., Lim, J., Carvalho, F., Cho, J.Y., Vaidyanathan, B., Yu, S., Annicelli, C., Ip, W.K.E., and Medzhitov, R. (2020). Long-term programming of CD8 T cell immunity by perinatal exposure to glucocorticoids. Cell 180, 847-861. e15.   DOI
52 Kay, G., Tarcic, N., Poltyrev, T., and Weinstock, M. (1998). Prenatal stress suppresses immune function in rats. Physiol. Behav. 63, 397-402.   DOI
53 Kelly, B.A., Lewandowski, A.J., Worton, S.A., Davis, E.F., Lazdam, M., Francis, J., Neubauer, S., Lucas, A., Singhal, A., and Leeson, P. (2012). Antenatal glucocorticoid exposure and long-term alterations in aortic function and glucose metabolism. Pediatrics 129, e1282-e1290.   DOI
54 Hartmann, J., Bajaj, T., Klengel, C., Chatzinakos, C., Ebert, T., Dedic, N., McCullough, K.M., Lardenoije, R., Joels, M., Meijer, O.C., et al. (2021). Mineralocorticoid receptors dampen glucocorticoid receptor sensitivity to stress via regulation of FKBP5. Cell Rep. 35, 109185.   DOI
55 Kelly-Irving, M., Lepage, B., Dedieu, D., Lacey, R., Cable, N., Bartley, M., Blane, D., Grosclaude, P., Lang, T., and Delpierre, C. (2013). Childhood adversity as a risk factor for cancer: findings from the 1958 British Birth Cohort Study. BMC Public Health 13, 767.   DOI
56 Schloesser, R.J., Manji, H.K., and Martinowich, K. (2009). Suppression of adult neurogenesis leads to an increased hypothalamic-pituitary-adrenal axis response. Neuroreport 20, 553-557.   DOI
57 Scott, G.R. and Johnston, I.A. (2012). The temperature during embryonic development has persistent effects on the thermal acclimation capacity of zebrafish. Proc. Natl. Acad. Sci. U. S. A. 109, 14247-14252.   DOI
58 Shimba, A., Cui, G., Tani-Ichi, S., Ogawa, M., Abe, S., Okazaki, F., Kitano, S., Miyachi, H., Yamada, H., Hara, T., et al. (2018). Glucocorticoids drive diurnal oscillations in T cell distribution and response by inducing the Interleukin-7 receptor and CXCR4. Immunity 48, 286-298.e6.   DOI
59 Surjit, M., Ganti, K.P., Mukherji, A., Ye, T., Hua, G., Metzger, D., Li, M., and Chambon, P. (2011). Widespread negative response elements mediate direct repression by agonist-ligand glucocorticoid receptor. Cell 145, 224-241.   DOI
60 van Bodegom, M., Homberg, J.R., and Henckens, M. (2017). Modulation of the hypothalamic-pituitary-adrenal axis by early life stress exposure. Front. Cell. Neurosci. 11, 87.
61 Kuo, T., McQueen, A., Chen, T.C., and Wang, J.C. (2015). Regulation of glucose homeostasis by glucocorticoids. Adv. Exp. Med. Biol. 872, 99-126.   DOI
62 Levitt, N.S., Lindsay, R.S., Holmes, M.C., and Seckl, J. (1996). Dexamethasone in the last week of pregnancy attenuated hippocampal glucocorticoid receptor gene expression and elevated blood pressure in adult offspring of rats. Neuroendocrinology 64, 412-418.   DOI
63 McMullen, S. and Mostyn, A. (2009). Animal models for the study of the developmental origins of health and disease: workshop on nutritional models of the developmental origins of adult health and disease. Proc. Nutr. Soc. 68, 306-320.   DOI
64 Macfarlane, D.P., Forbes, S., and Walker, B.R. (2008). Glucocorticoids and fatty acid metabolism in humans: fuelling fat redistribution in metabolic syndrome. J. Endocrinol. 197, 189-204.   DOI
65 Matthews, S.G. (2000). Antenatal glucocorticoids and programming of the developing CNS. Pediatr. Res. 47, 291-300.   DOI
66 McEwen, B.S., Eiland, L., Hunter, R.G., and Miller, M.M. (2012). Stress and anxiety: structural plasticity and epigenetic regulation as a consequence of stress. Neuropharmacology 62, 3-12.   DOI
67 Moore, S.E., Collinson, A.C., Tamba N'Gom, P., Aspinall, R., and Prentice, A.M. (2006). Early immunological development and mortality from infectious diseases later in life. Proc. Nutr. Soc. 65, 311-318.   DOI
68 Welberg, L.A., Seckl, J.R., and Holmes, M.C. (2000). Inhibition of 11betahydroxysteroid dehydrogenase, the feto-placental barrier to maternal glucocorticoids, permanently programs amygdala GR mRNA expression and anxiety-like behavior in offspring. Eur. J. Neurosci. 12, 1047-1054.   DOI
69 Welberg, L.A., Seckl, J.R., and Holmes, M.C. (2001). Prenatal glucocorticoid programming of brain corticosteroid receptors and corticotrophinreleasing hormone: possible implications for behavior. Neuroscience 104, 71-79.   DOI