Browse > Article
http://dx.doi.org/10.5483/BMBRep.2013.46.1.261

Biochemistry and structure of phosphoinositide phosphatases  

Kim, Young Jun (Department of Applied Biochemistry, Konkuk University)
Jahan, Nusrat (Department of Applied Biochemistry, Konkuk University)
Bahk, Young Yil (Department of Biotechnology, Konkuk University)
Publication Information
BMB Reports / v.46, no.1, 2013 , pp. 1-8 More about this Journal
Abstract
Phosphoinositides are the phosphorylated derivatives of phosphatidylinositol, and play a very significant role in a diverse range of signaling processes in eukaryotic cells. A number of phosphoinositide-metabolizing enzymes, including phosphoinositide-kinases and phosphatases are involved in the synthesis and degradation of these phospholipids. Recently, the function of various phosphatases in the phosphatidylinositol signaling pathway has been of great interest. In the present review we summarize the structural insights and biochemistry of various phosphatases in regulating phosphoinositide metabolism.
Keywords
Phosphoinositide metabolism; Phosphoinositide phosphatases; Phosphoinositides; Signal transduction;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Mitchell, C. A., Gurung, R., Kong, A. M., Dyson, J. M., Tan, A. and Ooms, L. M. (2002) Inositol polyphosphate 5-phosphatases: lipid phosphatases with flair. IUBMB Life 53, 25-36.   DOI
2 McPherson, P. S., Garcia, E. P., Slepnes, V. I., David, C., Zhang, X., Grabs, D., Sossin, W. S., Bauerfeind, R., Nemoto, Y. and De Camilli, P. (1996) A presynaptic inositol- 5-phosphatase. Nature 379, 353-357.   DOI   ScienceOn
3 Woscholski, R., Finan, P. M., Radley, E., Totty, N. F., Sterling, A. E., Hsuan, J. J., Waterfield, M. D. and Parker, P. J. (1997) Synaptojanin is the major constitutively active phosphatidylinositol-3,4,5-trisphosphate 5-phosphatase in rodent brain. J. Biol. Chem. 272, 9625-9628.   DOI   ScienceOn
4 deHeuvel, E., Bell, A. W., Ramjaun, A. R., Wong, K., Sossin, W. S. and McPherson, P. S. (1997) Identification of the major synaptojanin-binding proteins in brain. J. Biol. Chem. 272, 8710-8716.   DOI   ScienceOn
5 Micheva, K. D., Kay, B. K. and McPherson, P. S. (1997) Synaptojanin forms two searate complexes in the nerve terminal interctions with endophilin and amphiphysin. J. Biol. Chem. 272, 27239-27245.   DOI   ScienceOn
6 Murata, Y., Iwasaki, H., Sasaki, M., Inaba, K. and Okamura, Y. (2005) Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature 435, 1239-1243.   DOI   ScienceOn
7 Li, Q., Jogini, V., Wanderling, S., Cortes, D. M. and Perozo, E. (2012) Expression, purification and reconstitution of the voltage-sensing domain from Ci-VSP. Biochemistry 51, 8132-8142.   DOI   ScienceOn
8 Okamura, Y. (2007) Biodiversity of voltage sensor domain proteins. Flugers Arch. 454, 361-371.   DOI
9 Damen, J. E., Liu, L., Rosten, P., Humphries, R. K., Jefferson, A. B., Majerus, P. W. and Krystal, G. (1996) The 145-kDa protein induced to associate with Shc by multiple cytokines is an inositol tetraphosphate and phosphatidylinositol 3,4,5-triphosphate 5-phosphatase. Proc. Natl. Acad. Sci. U.S.A. 93, 1689-1693.   DOI
10 Sasaoka, T., Hori H., Waa, T., Ishiki, M., Haruta, T., Ishihara, H. and Kobayashi, M. (2001) SH2-containing inositol phosphatase 2 negatively regulateds insulin-induced glycogen synthesis in L6 myotubes. Diabetologia 44, 1258-1267.   DOI   ScienceOn
11 Wada, T., Sasaoka, T., Funaki, M., Hori, H., Murakami, S., Ishiki, M., Haruta, T., Asano, T., Ogawa, W., Ishihara, H. and Kobayashi, M. (2001) Overexpression of SH2 containing inositol phosphatase 2 results in negative regulation of insulin-induced metabolic actions in 3T3-L1 adipocytes via its 5'-phisphatase catalytic activity. Mol. Cell Biol. 21, 1633-1646.   DOI   ScienceOn
12 Suwa, A., Kurama, T. and Shimokawa, T. (2010) SHIP2 and its involvement in various diseases. Expert Opin. Ther. Targets. 14, 727-737.   DOI   ScienceOn
13 Hughes, W. E., Cooke, F. T. and Parker, P. J. (2000) Sac phosphatase domain proteins. Biochem. J. 350(Pt2), 337-352.   DOI   ScienceOn
14 Manford, A., Xia, T., Saxena, A. K., Stefan, C., Hu, F., Emr, S. D. and Mao, Y. (2010) Crystal structure of the yeast Sac1: implications for its phosphoinositide phosphatase function. EMBO J. 29, 1489-1498.   DOI   ScienceOn
15 Liu, Y. and Bankaitis, V. A. (2010) Phosphoinositide phosphatases in cell biology and disease. Prog. Lipid Res. 49, 201-207.   DOI   ScienceOn
16 McCrea, H. J. and De Camilli, P. (2009) Mutations in phosphoinositide metabolizing enzymes and human disease. Physiol. (Bethesda) 24, 8-16.   DOI   ScienceOn
17 Blero, D., Payrastre, B., Schurmans, S. and Erneux, C. (2007) Phospholinositide phosphatases in a neotwork of signaling reaction. Pflugers Arch. 455, 31-44.   DOI
18 Zhang, X. and Majesrus, P. W. (1998) Phosphatidylinositol signaling reactions. Semin. Cell Dev. Biol. 9, 153-160.   DOI   ScienceOn
19 Georgescu, M. (2011) PTEN tumor suppressor network in PI3K-Akt pathway control. Genes Cancers 1, 1170-1177.
20 Hlobilkova, A., Knillova, J., Bartek, J., Lukas, J. and Kolar, Z. (2003) The mechanism of action of the tumor suppressor gene PTEN. Biomed. Pap. Med. Fac. Univ. Palacky. Olomouc. Czech. Repub. 147, 19-25.   DOI
21 Keniry, M. and Oarsons, R. (2008) The role of PTEN signaling perturbations in cancer and in targeted therapy. Oncogene 27, 5477-5485.   DOI   ScienceOn
22 Yamada, K. M. and Araki, M. (2001) Tumor suppressor PTEN: modulator of cell signaling, growth, migration and apoptosis J. Cell Sci. 114, 2375-2382.
23 Lee, J. O., Yang, H., Georgescu, M. M., Di Cristofano, A., Maehama, T., Shi, Y., Dixon, J. E., Pandolfi, P. and Pavletich, N. P. (1999) Crystal structure of the PTEN tumor suppressor: implication for its phsphoinositide phosphatase activity and membrane association. Cell 99, 323-334.   DOI   ScienceOn
24 Das, S., Dixon, J. E. and Cho, W. (2003) Membrane-binding and activation mechanism of PTEN. Proc. Natl. Acad. Sci. U.S.A. 100, 7491-7496.   DOI   ScienceOn
25 Torres, J., Rodriguez, J., Myers, M. P., Valiente, M., Graves, J. D., Tonks, N. K. and Pulido, R. (2003) Phosphorylation-regulated cleavage of the tumor suppressor PTEN by caspase 3: implications for the control of protein stability and PTEN-protein interaction. J. Biol. Chem. 278, 30652-30660.   DOI   ScienceOn
26 Wang, X., Trotman, L. C., Koppie, T., Alimonti, A., Chen, Z., Gao, Z., Wang, J., Erdjument-Bromage, H., Tempst, P., Cordon-Cardo, C., Pandolfi, P. P. and Jiang, X. (2007) NEDD4-1 is a proto-oncogenic ubiquitin ligase for PTEN. Cell 128, 129-139.   DOI   ScienceOn
27 Li, D. M. and Sun, D. (1998) PTEN/MMAC/TEP1 suppresses the tumorigenecity and induces G1 cell cycle arrest in human glioblastoma cells. Proc. Natl. Acad. Sci. U.S.A. 95, 15406-15411.   DOI   ScienceOn
28 Shim, J. H., Kim, Y. S. and Bahk, Y. Y. (2006) Proteome profile changes that are differentially regulated by lipid and protein phosphatase activities of tumor suppressor PTEN in PTEN expressing U-87 MG human glioblastoma cells. Proteomics 6, 81-93.   DOI   ScienceOn
29 Tamura M., Gu, J., Matsumoto, K., Aota, S., Parsons, R. and Yamada, K. M. (1998) Inhibition of cell migration, spreading and focal adhesions by tumor suppressor PTEN. Science 280, 1614-1617.   DOI
30 Liliental, J., Moon, S. Y., Lesche, R., Mamillapalli, R., Li, D., Sun, Y. and Wu, H. (2000) Genetic deletion of the pten tumor suppressor gene promotes cell mobility by activation of Rac1 and Cdc42 GTPase. Curr. Biol. 10, 401-404.
31 Kim, S. Y., Kim, Y. S. and Bahk, Y. Y. (2003) Proteome changes induced by expression of tumor suppressor PTEN. Mol. Cells 15, 396-405.   과학기술학회마을
32 Worby, C. A. and Dixon, J. E. (2005) Phosphoinositide phosphatases: emerging roles as voltage sensors? Mol. Interv. 5, 274-277.   DOI   ScienceOn
33 Wu, Y., Dowbenko, D., Pisabarro, M. T., Dillard-Telm, L., Loeppen, H. and Lasky L. A. (2001) PTEN2, a Golgi-associated testis-specific homologue of the PTEN tumor suppressor lipid phosphatase. J. Biol. Chem. 276, 21745-21753.   DOI   ScienceOn
34 Tapparel, C., Reymond, A., Girardet, C., Guillou, L., Lyle, R., Lamon, C., Hutterm, P. and Antonarakis, S. E. (2003) The TPTE gene family: cellular expression, subcellular localization and alternative splicing. Gene 323, 189-199.   DOI   ScienceOn
35 Walker, S. M. Downesm, C. P. and Leslie, N. R. (2001) TPIP: a novel phosphoinositide 3-phosphate. Biochem. J. 360, 277-283.   DOI
36 Hnia, K., Vaccari, I., Bolino, A. and Laporte, J. (2012) Myotubularinphosphoinositide phosphatases: cellular functions and disease pathophysiology. Trends Mol. Med. 18, 317-327.   DOI   ScienceOn
37 Whisstock, J. C., Wiradjaja, F., Waters, J. E. and Gurung, R. (2002) The structure and function of catalytic domains within inositol polyphosphate 5-phosphatases. IUBMB Life 53, 15-23.   DOI
38 Sachs, A. J., David, S. A., Haider, N. B. and Mystuen, A. M. (2009) Patterned neuoprotection in the Inpp4awbl mutant mouse cerebellum correlates with the expression of Eaat4. PLoS One 4, e8270.   DOI   ScienceOn
39 Astle, M. V., Seaton, G., Davies, E. M., Fedele, C. G., Rahman, P., Arsala, L. and Mitchell, C. A. (2006) Regulation of phosphoinositide signaling by the inositol polyphosphate 5-phosphatases. IUBMB Life. 58, 415-456.
40 Ooms, L. M., Horan, K. A., Ralman, P., Seaton, G., Gurung, R., Kethesparan, D. S. and Mitchell, C. A. (2009) The role of the inositol polyphosphate 5-phosphatases in cellular function and human disease. Biochem. J. 419, 29-49.   DOI   ScienceOn
41 Majerus, P. W., Kisseleva, M. and Norris, F. A. (1999) The role of phosphatases in inositol signaling reactions. J. Biol. Chem. 274, 10669-10672.   DOI   ScienceOn
42 Leung, W.-H., Tarasenko, T. and Bolland, S. (2009) Differential roles for the inositol phosphatase SHIP in the regulation of macrophages and lymphocytes. Immunol. Res. 43, 243-251.   DOI   ScienceOn
43 Rohrschneider, L. R., Fuller, J. F., Wolf, I., Liu, Y. and Lucas, D. M. (2000) Structure, function, and biology of SHIP proteins. Genes Dev. 14, 505-520.
44 Pessesse, X., Moreau, C., Drayer, A. L., Woschoski, R., Parker, P. and Erneux, C. (1998) The SH2 domain containing inositol 5-phospatase SHIP2 displays phosphatidylinositol 3,4,5-trisphosphate and inositol 1,3,4,5-tetakiphosphate 5-phosphatase activity. FEBS Lett. 437, 301-303.   DOI   ScienceOn
45 Backers, K., Blero, D., Paternotte, N., Zhang, J. and Erneux, C. (2003) The termination of PI3K signaling by SHIP1 and SHIP2 inositol 5-phosphatases. Adv. Enzyme Regul. 43, 15-28.   DOI   ScienceOn
46 Lowe, M. (2005) Structure and function of the Lowe syndrome protein OCRL1. Traffic 6, 711-719.   DOI   ScienceOn
47 Matzaris, M., O'Malley, C. J., Badger, A., Speed, C. J., Bird, P. I. and Mitchell, C. A. (1998) Distinct membrane and cytosolic forms of inositol polyphosphate 5-phosphatase II. Efficient membrane localization requires two discrete domains. J. Biol. Chem. 273, 8256-8267.   DOI   ScienceOn
48 Suchy, S. F. and Nussbaum, R. L. (2002) The deficiency of PIP2 5-phosphatase in Lowe syndrome affects actin polymerization. Am. J. Hum. Genet. 71, 1420-1427.   DOI   ScienceOn
49 Kavanaugh, W. M., Pot, D. A., Chin, S. M., Deuter- Reinhard, M., Jefferson, A. B., Norris, F. A., Masiarz, F. R., Cousens, L. S., Majerus, P. W. and Williams, L. T. (1996) Multiple forms of an inositol polyphosphate 5-phosphatase from signaling complexes with Shc and Grb2. Curr. Biol. 6, 438-445.   DOI   ScienceOn
50 Ishihara, H., Sasaoka, T., Hori, H., Wada, T., Hirai, H., Haruta, T., Langlois, W. J. and Kobayashi, M. (1999) Molecular cloning of rat SH-2-containing inositol phosphatase 2 (SHIP2) and its role in the regulation of insulin signaling. Biochem. Biophys. Res. Comm. 260, 265-272.   DOI   ScienceOn
51 Zhuang, G., Hunter, S., Hwang, Y. and Chen, J. (2007) Regulation of EphA2 receptor endocytosis by SHIP2 lipid phosphatase via phosphatidylinositol 3-kinase-dependent Rac1 activation. J. Biol. Chem. 282, 2683-2694.   DOI   ScienceOn
52 Leone, M., Cellitti, J. and Pellecchia, M. (2009) The Sam domain of the lipid phosphatase Ship2 adopts a common model to interact with Arap3-Sam and EphA2-Sam. BMC Struct. Biol. 9, 59.   DOI   ScienceOn
53 Muraille, E., Bruhns, P., Pessesse, X., Daeron, M. and Erneux, C. (2000) The SH2 domain containing inositol 5-phosphatase SHIP2 associated to the immunoreceptor tyrosine-based inhibition motif of $Fc{\gamma}RIIB$ in B cells under negative signaling. Immunol. Lett. 72, 7-15.   DOI   ScienceOn
54 Ono, M., Bolland, S., Tempst, P. and Ravetch, J. V. (1996) Role of the inositol phosphatase SHIP in negative regulation of the immune system by the receptor $Fc{\gamma}RIIB$. Nature 383, 263-266.   DOI   ScienceOn
55 Clague, M. J. and Lorenzo, O. (2005) The myotubularin family of lipid phosphatases. Traffic 6, 1063-1069.   DOI   ScienceOn
56 Chen, H., Rossier, C., Morris, M. A., Scott, H. S., Gos, A., Bairoch, A. and Antonarakis, S. E. (1999) A testis-specific gene, TPTE, encodes a putative transmembrane tyrosine [phosphatase and maps to the pericentromeric region of human chromosome 21 and 13, and to chromosomes 15, 22, and Y. Hum. Genet. 105, 399-409.   DOI
57 Mruk, D. D. and Cheng, C. Y. (2011) The myotubularin family of lipid phosphatases in disease and in spermatogenesis. Biochem. J. 433, 253-262.   DOI   ScienceOn
58 Begley, M. J. and Dixon, J. E. (2005) The structure and regulation of myotubularin phosphatase. Curr. Opin. Struc. Biol. 15, 614-620.   DOI   ScienceOn
59 Laporte, J., Bedez, F., Bolino, A. and Mandel, J. L. (2003) Myotubularins, a large disease-associated family of cooperating catalytically active and inactive phosphoinositides phosphatases. Hum. Mol. Genet. 12, R285-292.   DOI   ScienceOn
60 Robinson, F. L. and Dixon, J. E. (2006) Myotubularin phosphatases: policing 3-phosphoinositides. Trends Cell Biol. 16, 403-412.   DOI   ScienceOn
61 D'Angelo, G., Vicinanza, M., Di Campli, A. and De Matteis, A. (2008) The multiple roles of PtdIns(4)P-not just the precursor of PtdIns(4,5)P2. J. Cell Sci. 121, 1955-1963.   DOI   ScienceOn
62 Norris, F. A., Auethavekiat, V. and Majerus, P. W. (1995) The isolation and characterization of cDNA encoding human and rat brain inositol polyphosphate. J. Biol. Chem. 270, 16128-12133.   DOI   ScienceOn
63 Norris, F. A., Atkins, R. C. and Majerus, P. W. (1997) ThecDNA cloning and characterization of inositol polyphosphate 4-phosphatase type II. Evidence for conserved alternative splicing in the 4-phosphatase family. J. Biol. Chem. 272, 23859-23864.   DOI   ScienceOn
64 Doughty-Shenton, D., Joseph, J. D., Zhang, J., Pagliarini, D. J., Kim, Y., Lu, D., Dixon, J. E. and Casey, P. J. (2010) Pharmacological targeting of the mitochondrial phosphatase PTPMT1. J. Pharmacol. Exp. Therap. 333, 584-592.   DOI   ScienceOn
65 Halaszovich, C. R., Schreiber, D. N. and Oliver, D. (2008) CiVSP is a depolarization-activated phosphatidylinositol-4, 5-bisphosphate and phosphatidylinositol-3,4,5-trisphosphate 5'-phosphatase. J. Biol. Chem. 284, 2106-2113.   DOI   ScienceOn
66 Pagliarini, D. J., Worby, C. A. and Dixon, J. E. (2004) A PTEN-like phosphatase with a novel substrate specificity. J. Biol. Chem. 279, 38590-38596.   DOI   ScienceOn
67 Pagliarini, D. J., Wiley, S. E., Kimple, M. E., Dixon, J. R., Kelley, P., Worby, C. A., Casey, P. J. and Dixon, J. E. (2005) Involvement of a mitochondrial phosphatase in the regulation of ATP production and insulin secretion in pancreatic ${\beta}$ cells. Mol. Cell 19, 197-207.   DOI   ScienceOn
68 Zhang, J., Guan, Z., Murphy, A. N., Wiley, S. E., Perkins, G. A., Worby, C. A., Engel, J. L., Heacock, P., Nguyen, O. K., Wang, J. H., Raetz, C. R., Dowhan, W. and Dixon, J. E. (2011) Mitochondrial phsosphatase PTPMT1 us essential for cardiopin biosynthesis. Cell Metab. 13, 690-700.   DOI   ScienceOn
69 Xiao, J., Engel, J. L., Zhang, J., Chen, M. J., Manning, G. and Dixon, J. E. (2011) Structural and functional analysis of PTPMT1, a phosphatase required for cardiopin synthesis. Proc. Natl. Acd. Sci. U.S.A. 108, 11860-11865.   DOI   ScienceOn
70 Attree, O., Olivos, I. M., Okabe, I., Bailey, L. C., Nelson, D. L., Lewis, R. A., McInnes, R. R. and Nussbaum, R. L. (1992) The Lowe's oculocerebrorenal syndrome gene encodes a protein highly homologous to inositol polyphosphate- 5-phosphatase. Nature 358, 239-242.   DOI   ScienceOn
71 Pirruccello, M. and De Camilli, P. (2012) Inositol 5-phosphatases: insight from the Lowe syndrome protein OCRL. Trends Biochem. Sci. 37, 134-143.   DOI   ScienceOn