• 제목/요약/키워드: Interdisciplinary Program

검색결과 2,051건 처리시간 0.028초

repABC- Type Replicator Region of Megaplasmid pAtC58 in Agrobacterium tumefaciens C58

  • LEE KO-EUN;PARK DAE-KYUN;BAEK CHANG-HO;HWANG WON;KIM KUN-SOO
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권1호
    • /
    • pp.118-125
    • /
    • 2006
  • The region responsible for replication of the megaplasmid pAtC58 in the nopaline-type Agrobacterium tumefaciens strain C58 was determined. A derivative ofa Co1E1 vector, pBluscript SK-, incapable of autonomous replication in Agrobacterium spp, was cloned with a 7.6-kb Bg1II-HindIII fragment from a cosmid clone of pAtC58, which contains a region adjacent to the operon for the utilization of deoxyfructosyl glutamine (DFG). The resulting plasmid conferred resistance to carbenicillin on the A. tumefaciens strain UIA5 that is a plasmidfree derivative of C58. The plasmid was stably maintained in the strain even after consecutive cultures for generations. Analysis of nested deletions of the 7.6-kb fragment showed that a 4.3-kb BglII-XhoI region sufficiently confers replication of the derivative of the ColE1 vector on UIA5. The region comprises three ORFs, which have high homologies with repA, repB, and repC of plasm ids in virulent Agrobacterium spp. including pTiC58, pTiB6S3, pTi-SAKURA, and pRiA4b as well as those of symbiotic plasmids from Rhizobium spp. Phylogenie analysis showed that rep genes in pAtC58 are more closely related to those in pRiA4 than to pTi plasmids including pTiC58, suggesting that the two inborn plasmids, pTiC58 and pAtC58, harbored in C58 evolved from distinct origins.

Synthesis and Characterization of Thiophene-Based Copolymers Containing Urethane and Alkyl Functional Side Chains for Hybrid Bulk Heterojunction Photovoltaic Cell Applications

  • Im, Min-Joung;Kim, Chul-Hyun;Song, Myung-Kwan;Park, Jin-Su;Lee, Jae-Wook;Gal, Yeong-Soon;Lee, Jun-Hee;Jin, Sung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권2호
    • /
    • pp.559-565
    • /
    • 2011
  • The following noble series of statistical copolymers, poly[(2-(3-thienyl)ethanol n-butoxycarbonylmethylurethane)-co-3-hexylthiophene] (PURET-co-P3HT), were synthesized by the chemical dehydrogenation method using anhydrous $FeCl_3$. The structure and electro-optical properties of these copolymers were characterized using $^1H$-NMR, UV-visible spectroscopy, elemental analysis, GPC, DSC, TGA, photoluminescence (PL), and cyclic voltammetry (CV). The statistical copolymers, PURET-co-P3HT (1:0, 2:1, 1:1, 1:2, 1:3), were soluble in common organic solvents and easily spin coated onto indium-tin oxide (ITO) coated glass substrates. Hybrid bulk heterojunction photovoltaic cells with an ITO/G-PEDOT/PURET-co-P3HT:PCBM:Ag nanowires/$TiO_x$/Al configuration were fabricated, and the photovoltaic cells using PURET-co-P3HT (1:2) showed the best photovoltaic performance compared with those using PURET-co-P3HT (1:0, 2:1, 1:1, 1:3). The optimal hybrid bulk heterojunction photovoltaic cell exhibits a power conversion efficiency (PCE) of 1.58% ($V_{oc}$ = 0.82 V, $J_{sc}$ = 5.58, FF = 0.35) with PURET-co-P3HT (1:2) measured by using an AM 1.5 G irradiation (100 mW/$cm^2$) on an Oriel Xenon solar simulator (Oriel 300 W).

The effect of photon energy on intensity-modulated radiation therapy (IMRT) plans for prostate cancer

  • Sung, Won-Mo;Park, Jong-Min;Choi, Chang-Heon;Ha, Sung-Whan;Ye, Sung-Joon
    • Radiation Oncology Journal
    • /
    • 제30권1호
    • /
    • pp.27-35
    • /
    • 2012
  • Purpose: To evaluate the effect of common three photon energies (6-MV, 10-MV, and 15-MV) on intensity-modulated radiation therapy (IMRT) plans to treat prostate cancer patients. Materials and Methods: Twenty patients with prostate cancer treated locally to 81.0 Gy were retrospectively studied. 6-MV, 10-MV, and 15-MV IMRT plans for each patient were generated using suitable planning objectives, dose constraints, and 8-field setting. The plans were analyzed in terms of dose-volume histogram for the target coverage, dose conformity, organs at risk (OAR) sparing, and normal tissue integral dose. Results: Regardless of the energies chosen at the plans, the target coverage, conformity, and homogeneity of the plans were similar. However, there was a significant dose increase in rectal wall and femoral heads for 6-MV compared to those for 10-MV and 15-MV. The $V_{20Gy}$ of rectal wall with 6-MV, 10-MV, and 15-MV were 95.6%, 88.4%, and 89.4% while the mean dose to femoral heads were 31.7, 25.9, and 26.3 Gy, respectively. Integral doses to the normal tissues in higher energy (10-MV and 15-MV) plans were reduced by about 7%. Overall, integral doses in mid and low dose regions in 6-MV plans were increased by up to 13%. Conclusion: In this study, 10-MV prostate IMRT plans showed better OAR sparing and less integral doses than the 6-MV. The biological and clinical significance of this finding remains to be determined afterward, considering neutron dose contribution.

침대 패드 형태의 용량성 전극에서 측정된 심전도 신호를 처리하기 위한 자동 잡음 제거 및 피크 검출 알고리즘 (Automatic Noise Removal and Peak Detection Algorithm for ECG Measured from Capacitively Coupled Electrodes Included within a Cloth Mattress Pad)

  • 이원규;이홍지;윤희남;정기성;박광석
    • 대한의용생체공학회:의공학회지
    • /
    • 제35권4호
    • /
    • pp.87-94
    • /
    • 2014
  • Recent technological advances have increased interest in personal health monitoring. Electrocardiogram(ECG) monitoring is a basic healthcare activity and can provide decisive information regarding cardiovascular system status. In this study, we developed a capacitive ECG measurement system that can be included within a cloth mattress pad. The device permits ECG data to be obtained during sleep by using capacitive electrodes. However, it is difficult to detect R-wave peaks automatically because signals obtained from the system can include a high level of noise from various sources. Because R-peak detection is important in ECG applications, we developed an algorithm that can reduce noise and improve detection accuracy under noisy conditions. Algorithm reliability was evaluated by determining its sensitivity(Se), positive predictivity(+P), and error rate(Er) by using data from the MIT-BIH Polysomnographic Database and from our capacitive ECG system. The results showed that Se = 99.75%, +P = 99.77%, and Er = 0.47% for MIT-BIH Polysomnographic Database while Se = 96.47%, +P = 99.32%, and Er = 4.34% for our capacitive ECG system. Based on those results, we conclude that our R-peak detection method is capable of providing useful ECG information, even under noisy signal conditions.

Highly Efficient Red Emissive Heteroleptic Cyclometalated Iridium(III) Complexes Bearing Two Substituted 2-Phenylquinoxaline and One 2-Pyrazinecarboxylic Acid

  • Sengottuvelan, Nallathambi;Yun, Seong-Jae;Kim, Dae-Young;Hwang, In-Hye;Kang, Sung Kwon;Kim, Young-Inn
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권1호
    • /
    • pp.167-173
    • /
    • 2013
  • A series of highly efficient red phosphorescent heteroleptic iridium(III) complexes 1-6 containing two cyclometalating 2-(2,4-substitued phenyl)quinoxaline ligands and one chromophoric ancillary ligand were synthesized: (pqx)$_2Ir$(mprz) (1), (dmpqx)$_2Ir$(mprz) (2), (dfpqx)$_2Ir$(mprz) (3), (pqx)$_2Ir$(prz) (4), (dmpqx)$_2Ir$(prz) (5), (dfpqx)$_2Ir$(prz) (6), where pqx = 2-phenylquinoxaline, dfpqx = 2-(2,4-diflourophenyl)quinoxaline, dmpqx = 2-(2,4-dimethoxyphenyl)quinoxaline, prz = 2-pyrazinecarboxylate and mprz = 5-methyl-2-pyrazinecarboxylate. The absorption, emission, electrochemical and thermal properties of the complexes were evaluated for potential applications to organic light-emitting diodes (OLEDs). The structure of complex 2 was also determined by single-crystal X-ray diffraction analysis. Complex 2 exhibited distorted octahedral geometry around the iridium metal ion, for which 2-(2,4-dimethoxyphenyl)quinoxaline N atoms and C atoms of orthometalated phenyl groups are located at the mutual trans and cis-positions, respectively. The emission spectra of the complexes are governed largely by the nature of the cyclometalating ligand, and the phosphorescent peak wavelengths can be tuned from 588 to 630 nm with high quantum efficiencies of 0.64 to 0.86. Cyclic voltammetry revealed irreversible metal-centered oxidation with potentials in the range of 1.16 to 1.89 V as well as two quasi-reversible reduction waves with potentials ranging from -0.94 to -1.54 V due to the sequential addition of two electrons to the more electron-accepting heterocyclic portion of two distinctive cyclometalated C^N ligands.

Suppression of Fusarium Wilt Caused by Fusarium oxysporum f. sp. lactucae and Growth Promotion on Lettuce Using Bacterial Isolates

  • Yadav, Dil Raj;Adhikari, Mahesh;Kim, Sang Woo;Kim, Hyun Seung;Lee, Youn Su
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권9호
    • /
    • pp.1241-1255
    • /
    • 2021
  • This study was carried out to explore a non-chemical strategy for enhancing productivity by employing some antagonistic rhizobacteria. One hundred eighteen bacterial isolates were obtained from the rhizospheric zone of various crop fields of Gangwon-do, Korea, and screened for antifungal activity against Fusarium wilt (Fusarium oxysporum f. sp. lactucae) in lettuce crop under in vitro and in vivo conditions. In broth-based dual culture assay, fourteen bacterial isolates showed significant inhibition of mycelial growth of F. oxysporium f. sp. lactucae. All of the antagonistic isolates were further characterized for the antagonistic traits under in vitro conditions. The isolates were identified on the basis of biochemical characteristics and confirmed at their species level by 16S rRNA gene sequencing analysis. Arthrobacter sulfonivorans, Bacillus siamensis, Bacillus amyloliquefaciens, Pseudomonas proteolytica, four Paenibacillus peoriae strains, and Bacillus subtilis were identified from the biochemical characterization and 16S rRNA gene sequencing analysis. The isolates EN21 and EN23 showed significant decrease in disease severity on lettuce compared to infected control and other bacterial treatments under greenhouse conditions. Two bacterial isolates, EN4 and EN21, were evaluated to assess their disease reduction and growth promotion in lettuce in field conditions. The consortium of EN4 and EN21 showed significant enhancement of growth on lettuce by suppressing disease caused by F. oxysporum f. sp. lactucae respectively. This study clearly indicates that the promising isolates, EN4 (P. proteolytica) and EN21 (Bacillus siamensis), can be commercialized and used as biofertilizer and/or biopesticide for sustainable crop production.

The Small GTPase CsRAC1 Is Important for Fungal Development and Pepper Anthracnose in Colletotrichum scovillei

  • Lee, Noh-Hyun;Fu, Teng;Shin, Jong-Hwan;Song, Yong-Won;Jang, Dong-Cheol;Kim, Kyoung Su
    • The Plant Pathology Journal
    • /
    • 제37권6호
    • /
    • pp.607-618
    • /
    • 2021
  • The pepper anthracnose fungus, Colletotrichum scovillei, causes severe losses of pepper fruit production in the tropical and temperate zones. RAC1 is a highly conserved small GTP-binding protein in the Rho GT-Pase family. This protein has been demonstrated to play a role in fungal development, and pathogenicity in several plant pathogenic fungi. However, the functional roles of RAC1 are not characterized in C. scovillei causing anthracnose on pepper fruits. Here, we generated a deletion mutant (𝜟Csrac1) via homologous recombination to investigate the functional roles of CsRAC1. The 𝜟Csrac1 showed pleiotropic defects in fungal growth and developments, including vegetative growth, conidiogenesis, conidial germination and appressorium formation, compared to wild-type. Although 𝜟Csrac1 was able to develop appressoria, it failed to differentiate appressorium pegs. However, 𝜟Csrac1 still caused anthracnose disease with significantly reduced rate on wounded pepper fruits. Further analyses revealed that 𝜟Csrac1 was defective in tolerance to oxidative stress and suppression of host-defense genes. Taken together, our results suggest that CsRAC1 plays essential roles in fungal development and pathogenicity in C. scovilleipepper fruit pathosystem.

ZNF204P is a stemness-associated oncogenic long non-coding RNA in hepatocellular carcinoma

  • Hwang, Ji-Hyun;Lee, Jungwoo;Choi, Won-Young;Kim, Min-Jung;Lee, Jiyeon;Chu, Khanh Hoang Bao;Kim, Lark Kyun;Kim, Young-Joon
    • BMB Reports
    • /
    • 제55권6호
    • /
    • pp.281-286
    • /
    • 2022
  • Hepatocellular carcinoma is a major health burden, and though various treatments through much research are available, difficulties in early diagnosis and drug resistance to chemotherapy-based treatments render several ineffective. Cancer stem cell model has been used to explain formation of heterogeneous cell population within tumor mass, which is one of the underlying causes of high recurrence rate and acquired chemoresistance, highlighting the importance of CSC identification and understanding the molecular mechanisms of CSC drivers. Extracellular CSC-markers such as CD133, CD90 and EpCAM have been used successfully in CSC isolation, but studies have indicated that increasingly complex combinations are required for accurate identification. Pseudogene-derived long non-coding RNAs are useful candidates as intracellular CSC markers - factors that regulate pluripotency and self-renewal - given their cancer-specific expression and versatile regulation across several levels. Here, we present the use of microarray data to identify stemness-associated factors in liver cancer, and selection of sole pseudogene-derived lncRNA ZNF204P for experimental validation. ZNF204P knockdown impairs cell proliferation and migration/invasion. As the cytosolic ZNF204P shares miRNA binding sites with OCT4 and SOX2, well-known drivers of pluripotency and self-renewal, we propose that ZNF204P promotes tumorigenesis through the miRNA-145-5p/OCT4, SOX2 axis.

바이오매스 발전소 저회를 활용한 수용액 내 중금속(Zn, Ni, Cd, Cu) 흡착 효과 (Adsorption Effect of Heavy Metals (Zn, Ni, Cd, Cu) in Aqueous Solution Using Bottom Ash of Biomass Power Plant)

  • 김소희;이승규;윤진주;박재혁;강세원;조주식
    • 한국환경농학회지
    • /
    • 제41권4호
    • /
    • pp.252-260
    • /
    • 2022
  • BACKGROUND: The number of biomass power plants is increasing around the world and the amount of wastes from power plants is expected to increase. But the bottom ash (BA) is not recycled and has been dumped in landfill. This study was conducted to find out functional groups of BA and adsorption rate of heavy metals on BA. METHODS AND RESULTS: The BA was dried in oven at 105℃ for 24 hours, and characterized by analyzing the chemistry, functional group, and surface area. The adsorption rates of heavy metals on BA were evaluated by different concentration, time, and pH. As a result, the adsorption amount of the heavy metals was high in the order of Zn> Cu> Cd> Ni and the removal rates of Zn, Cu, Cd, and Ni by BA was 49.75, 30.20, 32.46, and 36.10%, respectively. Also, the maximum adsorption capacity of BA was different by the heavy metal in the environmental conditions, and it was suggested that the isotherms for Zn, Ni, Cd, and Cu were adequate to Langmuir model. CONCLUSION(S): It is suggested that it would be effective to remove heavy metals in aqueous solution by using BA from biomass power plants in South Korea.

An analysis of the waning effect of COVID-19 vaccinations

  • Bogyeom Lee;Hanbyul Song;Catherine Apio;Kyulhee Han;Jiwon Park;Zhe Liu;Hu Xuwen;Taesung Park
    • Genomics & Informatics
    • /
    • 제21권4호
    • /
    • pp.50.1-50.9
    • /
    • 2023
  • Vaccine development is one of the key efforts to control the spread of coronavirus disease 2019 (COVID-19). However, it has become apparent that the immunity acquired through vaccination is not permanent, known as the waning effect. Therefore, monitoring the proportion of the population with immunity is essential to improve the forecasting of future waves of the pandemic. Despite this, the impact of the waning effect on forecasting accuracies has not been extensively studied. We proposed a method for the estimation of the effective immunity (EI) rate which represents the waning effect by integrating the second and booster doses of COVID-19 vaccines. The EI rate, with different periods to the onset of the waning effect, was incorporated into three statistical models and two machine learning models. Stringency Index, omicron variant BA.5 rate (BA.5 rate), booster shot rate (BSR), and the EI rate were used as covariates and the best covariate combination was selected using prediction error. Among the prediction results, Generalized Additive Model showed the best improvement (decreasing 86% test error) with the EI rate. Furthermore, we confirmed that South Korea's decision to recommend booster shots after 90 days is reasonable since the waning effect onsets 90 days after the last dose of vaccine which improves the prediction of confirmed cases and deaths. Substituting BSR with EI rate in statistical models not only results in better predictions but also makes it possible to forecast a potential wave and help the local community react proactively to a rapid increase in confirmed cases.