• Title/Summary/Keyword: Intensity factor

Search Result 2,255, Processing Time 0.028 seconds

A Study on the Interaction between Distributed Cracks (분포 크랙들 사이에서의 상호 간섭에 관한 연구)

  • Han, Moon-Sik;Cho, Ja-Eung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.63-69
    • /
    • 2005
  • For the case that center crack is surrounded by four small cracks which are symmetrically distributed around center crack, the same values of normalized stress intensity factor of center crack according to the position of the tip of small cracks are located on the smooth curve. And the stress intensity factor according to any position of small cracks can be sufficiently obtained from this curve. The plastic zones between distributed cracks are also investigated by changing the positions of nearly small cracks. The occurrence of plastic zone due to the interaction between center crack and small cracks are analyzed by finite element method. The mechanical behavior at the vicinity of crack tips is investigated by plastic areas. The changes of plastic zones according to positions of distributed cracks are drawn schematically. The safety of materials is also analyzed.

A Prediction of Crack Propagation Rate under Random Loading (랜덤하중에서의 균열전파속도 추정법에 관한 연구)

  • 표동근;안태환
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.115-123
    • /
    • 1994
  • Under variable amplitude loading conditions, retardation or accelerated condition of fatigue crack growth occurs with every cycle, Because fatigue crack growth behavior varied depend on load time history. The modeling of stress amplitude with storm loading acted to ships and offshore structures applied this paper. The crack closure behavior examine by recording the variation in load-strain relationship. By taking process mentioned above, fatigue crack growth rate, crack length, stress intensity factor, and crack closure stress intensity factor were obtained from the stress cycles of each type of storm ; A(6m), B(7m), C(8m), D(9m), E(11m) and F(15m) which was wave height. It showed that the good agreement with between the experiment results and simulation of storm loads. So this estimated method of crack propagtion rate gives a good criterion for the safe design of vessels and marine structure.

  • PDF

Analysis of Stress Intensity Factor Using Boundary Element Method (경계요소법을 이용한 응력세기계수의 해석법)

  • 조희찬;김희송
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.2
    • /
    • pp.117-124
    • /
    • 1993
  • This study is concerned with an application of the boundary element method on the crack problem. The stable and efficient analysis method of two dimensional elastostatic stress intensity factor on the mode I deformations is established from the result o stress analysis for the center cracked plates. In order to precisely analyse, The subelements of quadratic element, singular elements on the crack tip and interface and division into regions are applied to elastic stress. The usefulness of the method has been tested with a center cracked plates, a double edge cracked plate and a single edge cracked plate, and the results have turned out to be fairly satisfactory.

  • PDF

Determination of the Threshold Stress Intensity Factor in Fatigue Crack Growth Test (피로균열성장시험에서 하한계 응력확대계수의 결정)

  • 허성필;석창성;양원호
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.3
    • /
    • pp.1-6
    • /
    • 2000
  • In fatigue crack growth test, it is important not only to analyze characteristics of fatigue crack growth but also to determine the threshold stress intensity factor, ${\Delta}K_{th}$. which is the threshold value of fatigue crack growth. Linear regression analysis using fatigue test data near the threshold is suggested to determine the ${\Delta}K_{th}$ in the standard test method but the ${\Delta}K_{th}$ can be affected by a fitting method. And there are some limitations on the linear regression analysis in the case of small number of test data near the threshold. The objective of this study is to investigate differences of the ${\Delta}K_{th}$ due to regression analysis method and to evaluate the relative error range of the ${\Delta}K_{th}$ in same fatigue crack growth test data.

  • PDF

Numerical analysis of the behaviour of repaired surface cracks with bonded composite patch

  • Merzoug, Mohamed;Boulenouar, Abdelkader;Benguediab, Mohamed
    • Steel and Composite Structures
    • /
    • v.25 no.2
    • /
    • pp.209-216
    • /
    • 2017
  • In this paper, the analysis of the behavior of surface cracks in finite-thickness plates repaired with a Boron/Epoxy composite patch is investigated using three-dimensional finite element methods. The stress intensity factor at the crack-front was used as the fracture criteria. Using the Ansys Parametric Design Language (APDL), the stress intensities at the internal and external positions of repaired surface crack were compared. The effects of the mechanical and geometrical properties of the adhesive layer and the composite patch on the variation of the stress intensity factor at the crack-front were examined.

FINITE ELEMENT SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATION WITH MULTIPLE CONCAVE CORNERS

  • Kim, Seokchan;Woo, Gyungsoo
    • Honam Mathematical Journal
    • /
    • v.40 no.4
    • /
    • pp.785-794
    • /
    • 2018
  • In [8] they introduced a new finite element method for accurate numerical solutions of Poisson equations with corner singularities. They consider the Poisson equations with homogeneous Dirichlet boundary condition with one corner singularity at the origin, and compute the finite element solution using standard FEM and use the extraction formula to compute the stress intensity factor, then pose a PDE with a regular solution by imposing the nonhomogeneous boundary condition using the computed stress intensity factor, which converges with optimal speed. From the solution they could get an accurate solution just by adding the singular part. This approach uses the polar coordinate and the cut-off function to control the singularity and the boundary condition. In this paper we consider Poisson equations with multiple singular points, which involves different cut-off functions which might overlaps together and shows the way of cording in FreeFEM++ to control the singular functions and cut-off functions with numerical experiments.

SINGULAR AND DUAL SINGULAR FUNCTIONS FOR PARTIAL DIFFERENTIAL EQUATION WITH AN INPUT FUNCTION IN H1(Ω)

  • Woo, Gyungsoo;Kim, Seokchan
    • East Asian mathematical journal
    • /
    • v.38 no.5
    • /
    • pp.603-610
    • /
    • 2022
  • In [6, 7] they introduced a new finite element method for accurate numerical solutions of Poisson equations with corner singularities. They consider the Poisson equations with homogeneous boundary conditions, compute the finite element solutions using standard FEM and use the extraction formula to compute the stress intensity factor(s), then they posed new PDE with a regular solution by imposing the nonhomogeneous boundary condition using the computed stress intensity factor(s), which converges with optimal speed. From the solution they could get an accurate solution just by adding the singular part. They considered a partial differential equation with the input function f ∈ L2(Ω). In this paper we consider a PDE with the input function f ∈ H1(Ω) and find the corresponding singular and dual singular functions. We also induce the corresponding extraction formula which are the basic element for the approach.

Suggestion of Gust Factor through Field Measurements of High-Rise Buildings (고층건물 현장계측을 통한 거스트 계수 제안)

  • Yoon, Sung-Won;Kim, Do-Hyun;Kim, Young-Moon;Kim, Dong-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.1
    • /
    • pp.69-76
    • /
    • 2008
  • The wind monitoring systems are installed in high-rise buildings to record wind response data. The measured buildings are located in Busan and Sokcho. The measured wind data are analysed in this paper to obtain the mean wind speed and direction, turbulence intensity and gust factor. By using the correlation between gust factor and turbulence intensity, the expression for gust factor based on wind data measured from the building is suggested. The field measurement data obtained here are useful for the validation of wind tunnel tests and the future design of tall building.

  • PDF

Study on the Stress Singularity of Interface Crack by using Boundary Element Method (경계요소법을 이용한 계면균열의 응력특이성에 관한 고찰)

  • Cho, Chong-Du;Kwahk, Si-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.197-204
    • /
    • 1999
  • The boundary element method was used for studying singularities of an interface crack with contact zones. The iterative procedure is applied to estimate the contact zone size. Because the contact zone size was extremely small in a tension field, a large number of Gaussian points were used for numerical integration of the Kernels. Stress extrapolation method and J-integral were used ofr determining stress intensity factors. When the interface crack was assumed to have opened tips, oscillatory singularities appear near the tips of the interface crack. But the interface crack with contact zone which Comninou suggested had no oscillatory behavior. The contact zone size under shear loading was much larger than that under tensile. The stress intensity factors computed by stress extrapolation method were close to those of Comninou's solution. And the stress intensity factor evaluated by J-integral was similar to that by stress extrapolation method.

  • PDF

Stress Intensity Factors and Kink Angle of a Crack Interacting with a Circular Inclusion Under Remote Mechanical and Thermal Loadings

  • Lee, Saebom;Park, Seung-Tae;Earmme, Youn-Young;Chung, Dae-Youl
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.8
    • /
    • pp.1120-1132
    • /
    • 2003
  • A problem of a circular elastic inhomogeneity interacting with a crack under uniform loadings (mechanical tension and heat flux at infinity) is solved. The singular. integral equations for edge and temperature dislocation distribution functions are constructed and solved numeric-ally, to obtain the stress intensity factors. The effects of the material property ratio on the stress intensity factor (SIF) are investigated. The computed SIFs are used to predict the kink angle of the crack when the crack grows.