• Title/Summary/Keyword: Intensity Modulation

Search Result 231, Processing Time 0.034 seconds

All-optical Signal Processing of Fiber Impairments in Dual-Polarization 112 Gbit/s m-ary QAM Coherent Transmission

  • Asif, Rameez;Islam, Muhammad Khawar;Zafrullah, Muhammad
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.57-62
    • /
    • 2013
  • We have numerically implemented a receiver side all-optical signal processing method, i.e. optical backward propagation (OBP), by dispersion compensating fiber (DCF) and non-linear compensator (NLC) devised by effective negative Kerr non-linear coefficient using two highly non-linear fibers (HNLFs). The method is implemented for the post-processing of fiber transmission impairments, i.e. chromatic dispersion (CD) and non-linearities (NL). The OBP module is evaluated for dual-polarization (DP) m-ary (m=4,16,32,64,256) quadrature amplitude modulation (QAM) in 112 Gbit/s coherent transmission over 1200 km standard single mode fiber (SMF). We have also investigated an intensity limited optical backward propagation module (IL-OBP) by using a self-phase modulation-based optical limiter with an appropriate pre-chirping to compensate for the intensity fluctuations in the transmission link. Our results show that in highly non-linear sensitive 256QAM transmission, we have observed a 66% increase in the transmission distance by implementing IL-OBP as compared to conventional OBP.

Analysis on power penalty due to timing jitters when considering intersymbol interference in the receivers on intensity modulation/direct detection optical communication systems (강도변조/직접검파 광통신 수신기에서 심벌간 간섭을 고려할 경우 타이밍 지터에 의한 잔력 페널티 해석)

  • 은수정;심요안;김부균
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.4
    • /
    • pp.1077-1088
    • /
    • 1996
  • In this paper, we propose a new method to analyze the performance degradation by timing jitters in the receivers of intensity modulation/direct detection digital optical communication systems where pulse-shaping filters are used to minimize intersymbol interference. The results obtained from the proposed analytical method show that conventional analytical methods underestimate the influence of timing jitters on the receiver performance. Using the proposed anlaytical method, we derive an analytic equation for approximated power penalty due to timing itters and obtain an exact power penalty by numerical analyses. Assuming Gaussian or uniform probability density function for timing jitters, we also show that assumption of Gaussian distribution for timing jitters yields more performance degration than that of uniform distribution.

  • PDF

Harmonic Intensity Reduction Technique for Single Phase Switched Reluctance Motor Drives Using a New Random PWM Scheme

  • Nguyen, Minh-Khai;Jung, Young-Gook;Yang, Hyong-Yeol;Lim, Young-Cheol
    • Journal of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.51-57
    • /
    • 2010
  • This paper proposes a new random switching strategy using a DSP TMS320F2812 to reduce the harmonics spectra of single phase switched reluctance motors. The proposed method combines the random turn-on/off angle technique and the random pulse width modulation technique. A harmonic spread factor (HSF) is used to evaluate the random modulation scheme. In order to confirm the effectiveness of the proposed method an experiment was conducted. The experimental results show that the harmonic intensity of the output voltage for the proposed method is better than that for conventional methods.

Generation of 10 GHz Short Pulses from Continuous Wave Laser Using Cascaded Intensity and Phase Modulators and a Single Mode Optical Fiber (광 강도/위상변조기 및 단일모드 광섬유를 이용한 CW 광원으로부터 10 GHz 초단 펄스발생)

  • Sung, Hyun-Ju;Seo, Dong-Sun
    • Journal of IKEEE
    • /
    • v.16 no.4
    • /
    • pp.364-368
    • /
    • 2012
  • We generate 10 GHz short pulses from a continuous wave laser at 1.5 um by cascaded intensity and phase modulation, followed by chirp compensation using a single mode fiber. The measured spectral and pulse widths are 0.64 nm and 5.7 ps respectively, resulting in the time-bandwidth product of 0.46.

A Theoretical Approach on the Turbulence Intensity of the Carrier Fluid in Two-phase Particle-laden Flows (고체입자가 부상된 이상유동에서 운반유체의 난류강도에 대한 해석적 접근)

  • Kim, Se-Yun;Lee, Chung-Gu;Lee, Kye-Bock
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2037-2042
    • /
    • 2003
  • The purpose of this research is to develop the model of turbulence modulation due to the presence of particles in various types of particle-laden flows. Available experimental data were surveyed and the dependence of turbulence modulation of carrier-phase on particle size, concentration and particle Reynolds number were examined. This study takes into account the effect of wake produced by particle, the drag between phases and the velocity gradient in the wake to estimate the production of turbulence. The model of turbulence modulation using the mixing length theory under the assumption of equilibrium flow is proposed. Numerical results show that the model is successful in predicting the characteristics of the particle-laden flow in various conditions both qualitatively and quantitatively.

  • PDF

Solar Cyclic Modulation of Diurnal Variation in Cosmic Ray Intensity

  • Park, Eun Ho;Jung, Jongil;Oh, Suyeon;Evenson, Paul
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.219-225
    • /
    • 2018
  • Cosmic rays are ions that move at relativistic speeds. They generate secondary cosmic rays by successive collisions with atmospheric particles, and then, the secondary particles reach the ground. The secondary particles are mainly neutrons and muons, and the neutrons are observed by the ground neutron monitor. This study compared the diurnal variation in cosmic ray intensity obtained via harmonic analysis and that obtained through the pile-up method, which was examined in a previous study. In addition, we analyzed the maximum phase of the diurnal variation using four neutron monitors with a cutoff rigidity below approximately 6 GV, located at similar longitudes to the Oulu and Rome neutron monitors. Expanding the data of solar cycles 20-24, we examined the time of the maximum cosmic ray intensity, that is, the maximum phase regarding the solar cyclic modulation. During solar cycles 20-24, the maximum phase derived by harmonic analysis showed no significant difference with that derived by the pile-up method. Thus, the pile-up method, a relatively straightforward process to analyze diurnal variation, could replace the complex harmonic analysis. In addition, the maximum phase at six neutron monitors shows the 22-year cyclic variation very clearly. The maximum phase tends to appear earlier and increase the width of the variation in solar cycles as the cutoff rigidity increases.

Brachytherapy: A Comprehensive Review

  • Lim, Young Kyung;Kim, Dohyeon
    • Progress in Medical Physics
    • /
    • v.32 no.2
    • /
    • pp.25-39
    • /
    • 2021
  • Brachytherapy, along with external beam radiation therapy (EBRT), is an essential and effective radiation treatment process. In brachytherapy, in contrast to EBRT, the radiation source is radioisotopes. Because these isotopes can be positioned inside or near the tumor, it is possible to protect other organs around the tumor while delivering an extremely high-dose of treatment to the tumor. Brachytherapy has a long history of more than 100 years. In the early 1900s, the radioisotopes used for brachytherapy were only radium or radon isotopes extracted from nature. Over time, however, various radioisotopes have been artificially produced. As radioisotopes have high radioactivity and miniature size, the application of brachytherapy has expanded to high-dose-rate brachytherapy. Recently, advanced treatment techniques used in EBRT, such as image guidance and intensity modulation techniques, have been applied to brachytherapy. Three-dimensional images, such as ultrasound, computed tomography, magnetic resonance imaging, and positron emission tomography are used for accurate delineation of treatment targets and normal organs. Intensity-modulated brachytherapy is anticipated to be performed in the near future, and it is anticipated that the treatment outcomes of applicable cancers will be greatly improved by this treatment's excellent dose delivery characteristics.