DOI QR코드

DOI QR Code

All-optical Signal Processing of Fiber Impairments in Dual-Polarization 112 Gbit/s m-ary QAM Coherent Transmission

  • Asif, Rameez (Department of Telecommunication Engineering, University of Engineering and Technology (UET)) ;
  • Islam, Muhammad Khawar (Department of Telecommunication Engineering, University of Engineering and Technology (UET)) ;
  • Zafrullah, Muhammad (Department of Electronics Engineering, University of Engineering and Technology (UET))
  • Received : 2012.08.23
  • Accepted : 2012.12.21
  • Published : 2013.02.25

Abstract

We have numerically implemented a receiver side all-optical signal processing method, i.e. optical backward propagation (OBP), by dispersion compensating fiber (DCF) and non-linear compensator (NLC) devised by effective negative Kerr non-linear coefficient using two highly non-linear fibers (HNLFs). The method is implemented for the post-processing of fiber transmission impairments, i.e. chromatic dispersion (CD) and non-linearities (NL). The OBP module is evaluated for dual-polarization (DP) m-ary (m=4,16,32,64,256) quadrature amplitude modulation (QAM) in 112 Gbit/s coherent transmission over 1200 km standard single mode fiber (SMF). We have also investigated an intensity limited optical backward propagation module (IL-OBP) by using a self-phase modulation-based optical limiter with an appropriate pre-chirping to compensate for the intensity fluctuations in the transmission link. Our results show that in highly non-linear sensitive 256QAM transmission, we have observed a 66% increase in the transmission distance by implementing IL-OBP as compared to conventional OBP.

Keywords

References

  1. C. R. S Fludger, T. Duthel, D. van den Borne, C. Schulien, E. Schmidt, T. Wuth, J. Geyer, E. de Man, G. D. Khoe, H. de Waardt, "Coherent equalization and POLMUXRZ- DQPSK for robust 100-GE transmission," IEEE J. Lightwave Technol. 26, 64-72 (2008). https://doi.org/10.1109/JLT.2007.912128
  2. P. P. Mitra and J. B. Stark, "Non-linear limits to the information capacity of optical fibre communications," Nature 411, 1027- 1030 (2001). https://doi.org/10.1038/35082518
  3. E. Ip and J. M. Kahn, "Compensation of dispersion and non-linear impairments using digital backpropagation," IEEE J. Lightwave Technol. 26, 3416-3425 (2008). https://doi.org/10.1109/JLT.2008.927791
  4. D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. Killey, P. Bayvel, S. J Savory, "Mitigation of fiber nonlinearity using a digital coherent receiver," IEEE J. Select. Topics Quantum Electron. 16, 1217-1226 (2010). https://doi.org/10.1109/JSTQE.2010.2047247
  5. F. Yaman and G. Li, "Non-linear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation," IEEE Photonics Journal 2, 144-152 (2009).
  6. R. Asif, C. Y. Lin, M. Holtmannspoetter, and B. Schmauss, "Optimized digital backward propagation for phase modulated signals in mixed-optical fiber transmission link," Opt. Express 18, 22796-22807 (2010). https://doi.org/10.1364/OE.18.022796
  7. C. Y. Lin, M. Holtmannspoetter, R. Asif, and B. Schmauss, "Compensation of transmission impairments by digital backward propagation for different link designs," in Proc. 36th European Conference Optical Communication (ECOC) (Torino Italy, September 2010), paper 3.16.
  8. L. Du and A. Lowery, "Improved single channel back-propagation for intra-channel fiber non-linearity compensation in long-haul optical communication systems," Opt. Express 18, 17075-17088 (2010). https://doi.org/10.1364/OE.18.017075
  9. L. Li, Z. Tao, L. Dou, W. Yan, S. Oda, T. Tanimura, T. Hoshida, and J. Rasmussen, "Implementation efficient nonlinear equalizer based on correlated digital back-propagation," in Proc. Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC) (Los Angeles, USA, March 2011), paper OWW3.
  10. D. Rafique, M. Mussolin, M. Forzati, J. Martensson, M. N. Chugtai, and A. Ellis, "Compensation of intra-channel nonlinear fibre impairments using simplified digital back-propagation algorithm," Opt. Express 19, 9453-9460 (2011). https://doi.org/10.1364/OE.19.009453
  11. P. Poggiolini, G. Bosco, A. Carena, V. Curri, V. Miot, and F. Forghieri, "Performance dependence on channel baud-rate of PM-QPSK systems over uncompensated links," IEEE Photon. Technol. Lett. 23, 15-17 (2011). https://doi.org/10.1109/LPT.2010.2089509
  12. R. Asif, C. Y. Lin, M. Holtmannspoetter, and B. Schmauss, "Logarithmic step-size based digital backward propagation in N-channel 112 Gbit/s/ch DP-QPSK transmission," in Proc. 13th International Conference on Transparent Optical Networks (ICTON) (Stockholm, Sweden, June 2011), paper T.u.P6.
  13. R. Asif, C. Y. Lin, and B. Schmauss, "Impact of channel baud-rate on logarithmic digital backward propagation in DP-QPSK system with uncompensated transmission links," Opt. Commun. 284, 5673-5677 (2011). https://doi.org/10.1016/j.optcom.2011.08.050
  14. R. Asif, C. Y. Lin, M. Holtmannspoetter, and B. Schmauss, "Multi-span digital non-linear compensation for dual-polarization quadrature phase shift keying Long-Haul communication systems," Opt. Commun. 285, 1814-1818 (2012). https://doi.org/10.1016/j.optcom.2011.11.120
  15. M. Nolle, J. Hilt, L. Molle, M. Seimetz, and R. Freund, "8${\times}$224 Gbit/s PDM 16QAM WDM transmission with real-time signal processing at the transmitter," in Proc. 36th European Conference and Exhibition on Optical Communication (ECOC) 2010 (Torino, Italy, September 2010), paper We.8.C.4.
  16. M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, "11${\times}$224-Gb/s POLMUXRZ- 16QAM transmission over 670 km of SSMF with 50-GHz channel spacing," IEEE Photon. Technol. Lett. 22, 1150-1152 (2010). https://doi.org/10.1109/LPT.2010.2051146
  17. V. Sleiffer, M. S. Alfiad, D. van den Borne, M. Kuschnerov, V. Veljanovski, M. Hirano, Y. Yamamoto, T. Sasaki, S. L. Jansen, T. Wuth, and H. de Waardt, "10${\times}$224-Gb/s POLMUX-16QAM transmission over 656 km of large Aeff PSCF with a spectral efficiency of 5.6 b/s/Hz," IEEE Photon. Technol. Lett. 23, 1427-1429 (2011). https://doi.org/10.1109/LPT.2011.2162722
  18. D. Rafique, J. Zhao, and A. Ellis, "Digital back-propagation for spectrally efficient WDM 112 Gbit/s PM m-ary QAM transmission," Opt. Express 19, 5219-5224 (2011). https://doi.org/10.1364/OE.19.005219
  19. M. Mussolin, D. Rafique, J. Martensson, M. Forzati, J. Fischer, L. Molle, M. Nlle, C. Schubert, and A. Ellis, "Polarization multiplexed 224 Gb/s 16QAM transmission employing digital back-propagation," in Proc. 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Geneva, Switzerland, 2011),paper We.8.B.6.
  20. S. Kumar and D. Yang, "Optical backpropagation for fiber-optic communications using highly nonlinear fibers," Opt. Lett. 36, 1038-1040 (2011). https://doi.org/10.1364/OL.36.001038
  21. M. Matsumoto, "Fiber-based all-optical signal regeneration," IEEE J. Select. Topics Quantum Electron. 18, 738-752 (2012). https://doi.org/10.1109/JSTQE.2011.2136331
  22. M. Matsumoto and K. Sanuki, "Performance improvement of DPSK signal transmission by a phase-preserving amplitude limiter," Opt. Express 15, 8094-8103 (2007). https://doi.org/10.1364/OE.15.008094
  23. M. Gay, M. Costa e Silva, T. N. Nguyen, L. Bramerie, T. Chartier, M. Joindot, J. C. Simon, J. Fatome, C. Finot, and J. L. Oudar, "Bit-error-rate assessment of 170-Gb/s regeneration using a saturable absorber and a nonlinear-fiber- based power limiter," IEEE Photon. Technol. Lett. 22, 158-160 (2010). https://doi.org/10.1109/LPT.2009.2037157
  24. T. Ohara, H. Takara, S. Kawanishi, T. Yamada, and M. M. Fejer, "160 GBit/s all-optical limiter based on spectrally filtered optical solitons," IEEE Photon. Technol. Lett. 16, 2311-2313 (2004). https://doi.org/10.1109/LPT.2004.833871
  25. T. Konishi, H. Goto, T. Kato, and K. Kawanishi, "Advanced optical limiting function based on effective understanding of physical phenomena," in Proc. 11th International Conference on Transparent Optical Networks (ICTON) (Stockholm, Sweden, July 2009), pp.1-4.
  26. K. Kawanishi, F. Drouet, K. Itoh, and T. Konishi, "Highly accurate compensation technique for 10-GHz pulse intensity fluctuation using spm-based all-optical intensity limiter," IEEE Photon. Technol. Lett. 24, 119-121 (2012). https://doi.org/10.1109/LPT.2011.2173567

Cited by

  1. Dynamic Load-Balancing Algorithm Incorporating Flow Distributions and Service Levels for an AOPS Node vol.18, pp.5, 2014, https://doi.org/10.3807/JOSK.2014.18.5.466
  2. Terabit-Per-Second Optical Super-Channel Receiver Models for Partial Demultiplexing of an OFDM Spectrum vol.19, pp.4, 2015, https://doi.org/10.3807/JOSK.2015.19.4.334
  3. Hybrid opto-digital signal processing in 112 Gbit/s DP-16QAM and DP-QDB transmission for long-haul large- $$\hbox {A}_\mathrm{eff}$$ A eff pure-silica-core fiber links vol.32, pp.1, 2016, https://doi.org/10.1007/s11107-015-0533-z
  4. Advanced and flexible multi-carrier receiver architecture for high-count multi-core fiber based space division multiplexed applications vol.6, pp.1, 2016, https://doi.org/10.1038/srep27465