• Title/Summary/Keyword: Intensity Factors

Search Result 1,963, Processing Time 0.033 seconds

GENERATION OF AIRBORNE LIDAR INTENSITY IMAGE BY NORMALIZAING RANGE DIFFERENCES

  • Shin, Jung-Il;Yoon, Jong-Suk;Lee, Kyu-Sung
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.504-507
    • /
    • 2006
  • Airborn Lidar technology has been applied to diverse applications with the advantages of accurate 3D information. Further, Lidar intensity, backscattered signal power, can provid us additional information regarding target's characteristics. Lidar intensity varies by the target reflectance, moisture condition, range, and viewing geometry. This study purposes to generate normalized airborne LiDAR intensity image considering those influential factors such as reflectance, range and geometric/topographic factors (scan angle, ground height, aspect, slope, local incidence angle: LIA). Laser points from one flight line were extracted to simplify the geometric conditions. Laser intensities of sample plots, selected by using a set of reference data and ground survey, werethen statistically analyzed with independent variables. Target reflectance, range between sensor and target, and surface slope were main factors to influence the laser intensity. Intensity of laser points was initially normalized by removing range effect only. However, microsite topographic factor, such as slope angle, was not normalized due to difficulty of automatic calculation.

  • PDF

Effect of the yield criterion on the strain rate and plastic work rate intensity factors in axisymmetric flow

  • Lyamina, Elena A.;Nguyen, Thanh
    • Structural Engineering and Mechanics
    • /
    • v.58 no.4
    • /
    • pp.719-729
    • /
    • 2016
  • The main objective of the present paper is to study the effect of the yield criterion on the magnitude of the strain rate and plastic work rate intensity factors in axisymmetric flow of isotropic incompressible rigid perfectly plastic material by means of a problem permitting a closed-form solution. The boundary value problem consisting of the axisymmetric deformation of a plastic tube is solved. The outer surface of the tube contracts. The radius of the inner surface does not change. The material of the tube obeys quite a general yield criterion and its associated flow rule. The maximum friction law is assumed at the inner surface of the tube. Therefore, the velocity field is singular near this surface. In particular, the strain rate and plastic work rate intensity factors are derived from the solution. It is shown that the strain rate intensity factor does not depend on the yield criterion but the plastic work rate intensity factor does.

Determination of thermal Stress Intensity Factors for General Cusp-Crack Shaped Rigid Inclusion (일반 형상의 커프스형 강체균열에 대한 열응력세기계수 결정)

  • 이강용;장용훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1216-1220
    • /
    • 1992
  • In case that a general cusp-crack shaped inclusion expressed in a polynominal form of conformal mapping function exists in a two dimensional elastic body under uniform heat flow, the complex potential and thermal stress intensity factors are derived. Two thermal boundary conditions are considered, one an insulated rigid inclusion and the other a rigid inclusion with fixed boundary temperature. The previous solutions of the thermal stress intensity factors for symmetrical airfoil and lip type rigid inclusions are obtained from the general solution of the thermal stress intensity factors.

Application of Weight Function Method to the Mixed-Mode Stress Intensity Factor Analysis of Cracks in Bolted Joints (볼트 체결부 균열의 혼합모드 응력확대계수 해석에 대한 가중함수법의 적용)

  • Heo, Sung-Pil;Yang, Won-Ho;Chung, Ki-Hyun;Cho, Myoung-Rae;Hyun, Cheol-Seung
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.212-217
    • /
    • 2000
  • The reliable determination of the stress intensity factors for cracks in bolted Joints is needed to evaluate the safety and fatigue life of them widely used in mechanical components. The weight function method is an efficient technique to calculate the stress intensity factors for various loading conditions using the stresses of an uncracked model. In this paper the mixed-mode stress intensity factors for cracks in bolted joints are obtained by weight function method, in which the coefficients of weight function are determined by finite element analyses far reference loadings. The effects of the magnitude of clearance and factional coefficient on the stress intensity factors are investigated.

  • PDF

Analysis of Stress Intensity Factors for an Interface Crack in Anisotropic Dissimilar Materials by Boundary Element Method (경계요소법에 의한 이방성 이종재 접합계면 균열의 응력확대계수 해석)

  • 조상봉;권재도;김태규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.359-370
    • /
    • 1993
  • Up to now, most studies are on interface crack problems in isotropic-isotropic dissimilar materials, but it seems to be not so much on anisotropic dissimlar materials. In this study, the stress intensity factors for an interface crack in anisotropic dissimilar materials are analysed using author's proposed extrapolation method by BEM and we have done a parametric study about material properties or shapes of crack affecting to the stress intensity factors. However, as there are not other's comparable numerical results on these anisotropic dissimilar materials to the best of author's knowledge, the reliability of the present results was proved by following two methods. The first is considering the asymptotic characteristic about stress intensity factors for an interface crack in anisotropic materials when the ansiotropic material approachs to the isotropic material. The second is considering the discontinuity of stress intensity factors between of a crack in an identical homogeneous anisotropic material and an interface crack in anisotropic dissimilar materials.

Comparison of the Relationship Between Impairment, Disability and Psychological Factors According to the Difference of Duration of Low Back Pain (요통기간에 따른 손상, 장애, 심리적 요인들의 상관성 비교)

  • Won, Jong-Im
    • Physical Therapy Korea
    • /
    • v.18 no.3
    • /
    • pp.76-84
    • /
    • 2011
  • The purpose of this study was to investigate the correlations between pain intensity, physical impairments, disability, and psychological factors according to the difference in duration of low back pain. This study was a cross-sectional survey of 102 participants with low back pain, divided into two groups equal in number: The first group consisted of patients with acute and subacute low back pain, while the second group consisted of patients suffering from chronic low back pain. The results showed that gender, age, pain intensity, physical impairment, disability and Fear-Avoidance Beliefs (FABs) for work activities were not significantly different between two groups. FABs for physical activities of the first group were significantly more prevalent than in the second group. More than moderate correlations were found between pain intensity, physical impairment, and disability in the first group. Less than moderate correlations were found between pain intensity, physical impairment, disability, FABs, and depression in the second group. These findings suggest that we must consider psychological factors in the treatment of patients with chronic low back pain. Regression analyses revealed that pain intensity and FABs for work activities significantly contributed to the prediction of disability in the first group. Also, pain intensity and FABs for physical activities significantly contributed to the prediction of disability in the second group. Pain intensity was most important predictor of disability in two groups.

Determination of Stress Intensity Factors for Embedded Elliptical Crack in Turbine Rotor (터빈축차내에 내재된 타원균열의 응력세기계수 결정)

  • 이강용;김종성;하정수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.5
    • /
    • pp.1229-1242
    • /
    • 1995
  • The thermal shock stress intensity factors of semi-elliptical surface crack in finite plate and the stress intensity fractors of embedded elliptical crack in turbine rotor is determined by means of Vainshtok weight function method. In case of semi-elliptical surface crack, the solution is compared with previous solution. The stress intensity factor for embedded elliptical crack in turbine rotor loaded by centrifugal and thermal loading is also determined. In this case, the value of stress intensity factor is larger at crack contour near internal radius surface and is almost constant at the crack contour farther from internal radius surface.

A Study on the Development of the Dynamic Photoelastic Hybrid Method for Isotropic Material (등방성체용 동적 광탄성 하이브리드 법 개발에 관한 연구)

  • Sin, Dong-Cheol;Hwang, Jae-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2220-2227
    • /
    • 2000
  • In this paper, dynamic photoelastic hybrid method is developed and its validity is certified. The dynamic photoelastic hybrid method can be used on the obtaining of dynamic stress intensity factors and dynamic stress components. The effect of crack length on the dynamic stress intensity factors is less than those on the static stress intensity factors. When structures are under the dynamic mixed mode load, dynamic stress intensity factor of mode I is almost produced. Dynamic loading device manufactured in this research can be used on the research of dynamic behavior when mechanical resonance is produced and when crack is propagated with the constant velocity.

Calculation of Intensity Factors Using Weight Function Theory for a Transversely Isotropic Piezoelectric Material (횡등방성 압전재료에서의 가중함수이론을 이용한 확대계수 계산)

  • Son, In-Ho;An, Deuk-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.2
    • /
    • pp.149-156
    • /
    • 2012
  • In fracture mechanics, the weight function can be used for calculating stress intensity factors. In this paper, a two-dimensional electroelastic analysis is performed on a transversely isotropic piezoelectric material with an open crack. A plane strain formulation of the piezoelectric problem is solved within the Leknitskii formalism. Weight function theory is extended to piezoelectric materials. The stress intensity factors and electric displacement intensity factor are calculated by the weight function theory.

The Computation of Stress Intensity Factor of the Crack on the Surface of the Pin Joint (핀으로 연결된 결합부분의 표면에 위치한 균열의 응력확대계수 계산)

  • 정동수;이기수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.921-927
    • /
    • 1996
  • The purpose of this study is to compute the stress intensity factors of various conditions in the cracked p! ate. The stress intensity factor of pin-loaded cracked plate is investigated using the finite element method. This paper is divided into the two parts. The first part is the contact analysis, and the second is to compute the stress intensity factors. In the contact analysis, the iterative method is used, and convergence of this method is presented. In the computation of the stress intensity factors of plate, the length of crack, clearance, and angle are considered

  • PDF