• 제목/요약/키워드: Intense Rainfall

검색결과 49건 처리시간 0.03초

횡성호의 유기물 수지 및 거동 특성 (Organic Matters Budget and Movement Characteristic in Lake Hoengseong)

  • 정승현;박혜경;윤석환
    • 한국물환경학회지
    • /
    • 제28권2호
    • /
    • pp.238-246
    • /
    • 2012
  • Organic matters budget in Lake Hoengseong were monthly investigated from April 2009 to November 2009. The intense rainfall occurred at between July and August and the hydrological factors were highly varied during the rainfall season. By the concentrated rainfall, the elevation, influx and efflux were sharply increased and the turbid water was also flowed into the middle water column in Lake. The inflow of turbid water increased the nutrient concentrations in water body and this appears to stimulate of phytoplankton regard as the primary productivity of influx of organic matter. Monthly average concentration of dissolved organic carbon (DOC) was generally higher than the particulate organic carbon (POC) concentration in Lake, but Temporal and spatial variation of POC concentration was higher than DOC and the maximum POC concentration was recorded in surface water in August, had the highest phytoplankton biomass. Organic carbon concentration in inflow site was rarely changed during the dry season, but the concentration was rapidly increased by the initial intense rainfall. In organic matters budget, the most of the organic matters was inflowed from the inflow site at rainfall season. Especially, the influx of allochthonous organic matters during the intense rainfall was 72.4% in the total influx organic matters.

사면방재를 위한 무선센서 네트워크 기술연구 (Landslide Detection using Wireless Sensor Networks)

  • 김형우;이범교
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2008년도 정기총회 및 학술발표대회
    • /
    • pp.369-372
    • /
    • 2008
  • Recently, landslides have frequently occurred on natural slopes during periods of intense rainfall. With a rapidly increasing population on or near steep terrain in Korea, landslides have become one of the most significant natural hazards. Thus, it is necessary to protect people from landslides and to minimize the damage of houses, roads and other facilities. To accomplish this goal, many landslide prediction methods have been developed in the world. In this study, a simple landslide prediction system that enables people to escape the endangered area is introduced. The system is focused to debris flows which happen frequently during periods of intense rainfall. The system is based on the wireless sensor network (WSN) that is composed of sensor nodes, gateway, and server system. Sensor nodes comprising a sensing part and a communication part are developed to detect ground movement. Sensing part is designed to measure inclination angle and acceleration accurately, and communication part is deployed with Bluetooth (IEEE 802.15.1) module to transmit the data to the gateway. To verify the feasibility of this landslide prediction system, a series of experimental studies was performed at a small-scale earth slope equipped with an artificial rainfall dropping device. It is found that sensing nodes installed at slope can detect the ground motion when the slope starts to move. It is expected that the landslide prediction system by wireless senor network can provide early warnings when landslides such as debris flow occurs.

  • PDF

집중호우시 산사태 원인분석에 관한 사례연구 (A Case Study of Landslides due to Heavy Rainfall)

  • 유남재;박병수
    • 산업기술연구
    • /
    • 제21권A호
    • /
    • pp.303-315
    • /
    • 2001
  • This study is a research result of investigating causes of landslides occurred at Uijongbu in Kyonggi Province, Korea. For works of this research, informations and data about landslides occurred at the site, geological and topographical informations were collected to analyze causes of landslides, and mapping landslides was performed by using results of field investigation. Data about rainfall during occurrence of landslides around Uijongbu was also used to find the effect of intense rainfall on occurrence of landslides. Based on informations obtained from field investigation and collected data, the scale and the pattern of landslides were analyzed and influencing factors on landslide such as intensity and duration of rainfall, topography, geologic condition, geotechnical engineering properties of ground, forestry were investigated statistically to find causes of landslides. On the other hands, for geotechnical engineering respects, slope stability analysis was performed for the typical sites chosen from the sites where the landslides occurred, using informations obtained from detailed topographical survey with total stations, field reconnaissance and results from laboratory tests.

  • PDF

무선센서 네트워크에 의한 경사면 계측 실용화 연구 (Landslide monitoring using wireless sensor network)

  • 김형우
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.1324-1331
    • /
    • 2008
  • Recently, landslides have frequently occurred on natural slopes during periods of intense rainfall. With a rapidly increasing population on or near steep terrain in Korea, landslides have become one of the most significant natural hazards. Thus, it is necessary to protect people from landslides and to minimize the damage of houses, roads and other facilities. To accomplish this goal, many landslide prediction methods have been developed in the world. In this study, a simple landslide prediction system that enables people to escape the endangered area is introduced. The system is focused to debris flows which happen frequently during periods of intense rainfall. The system is based on the wireless sensor network (WSN) that is composed of sensor nodes, gateway, and server system. Sensor nodes and gateway are deployed with Microstrain G-Link system. Five wireless sensor nodes and gateway are installed at the man-made slope to detect landslide. It is found that the acceleration data of each sensor node can be obtained via wireless sensor networks. Additionally, thresholds to determine whether the slope will be stable or not are proposed using finite element analysis. It is expected that the landslide prediction system by wireless senor network can provide early warnings when landslides such as debris flow occurs.

  • PDF

FLASH FLOOD FORECASTING USING ReMOTELY SENSED INFORMATION AND NEURAL NETWORKS PART I : MODEL DEVELOPMENT

  • Kim, Gwang-seob;Lee, Jong-Seok
    • Water Engineering Research
    • /
    • 제3권2호
    • /
    • pp.113-122
    • /
    • 2002
  • Accurate quantitative forecasting of rainfall for basins with a short response time is essential to predict flash floods. In this study, a Quantitative Flood Forecasting (QFF) model was developed by incorporating the evolving structure and frequency of intense weather systems and by using neural network approach. Besides using radiosonde and rainfall data, the model also used the satellite-derived characteristics of storm systems such as tropical cyclones, mesoscale convective complex systems and convective cloud clusters as input. The convective classification and tracking system (CCATS) was used to identify and quantify storm properties such as lifetime, area, eccentricity, and track. As in standard expert prediction systems, the fundamental structure of the neural network model was learned from the hydroclimatology of the relationships between weather system, rainfall production and streamflow response in the study area. All these processes stretched leadtime up to 18 hours. The QFF model will be applied to the mid-Atlantic region of United States in a forthcoming paper.

  • PDF

반복강우에 의한 풍화토층 절토사면 침투특성에 관한 연구 (Infiltration Characteristics of a Weathered Cut-Slope during Repetition Rainfall)

  • 이정엽;김승현;최지용;구호본
    • 지질공학
    • /
    • 제20권4호
    • /
    • pp.409-414
    • /
    • 2010
  • 강우는 사면 붕괴에 영향을 미치고 있는 요인 중의 하나이다. 최근 기후변화에 집중강우가 빈번하게 발생하고 있으며, 단시간에 많은 양의 강우강도와 반복적인 강우특성을 가지고 있다. 강우가 발생하게 되면 강우의 대부분은 사면 법면을 따라 유출되지만, 일부는 지반 내로 침투하게 되며, 침투수는 주로 얕은 파괴를 유발시키는 것으로 알려져 있다. 하지만, 본 연구에서는 우기 시 빈번하게 발생하는 반복적인 게릴라성 강우로 인한 침투가 사면 안정성에 어떠한 영향을 미치고 있는지 다양한 조건에서 유한요소해석법을 이용하여 침투특성을 분석하였다. 분석 결과, 강우 주기가 짧고 반복횟수가 많을수록 사면 내부에 침투의 영향이 크게 작용하며, 짧은 시간의 강우에도 침투 영향을 고려할 필요가 있는 등 사면 관리자의 침투에 대한 주의 깊은 관심이 필요하다.

토석류 발생 지형과 유발 강우 특성 분석 (Characteristics of Basin Topography and Rainfall Triggering Debris Flow)

  • 김경석
    • 대한토목학회논문집
    • /
    • 제28권5C호
    • /
    • pp.263-271
    • /
    • 2008
  • 토석류 위험에 체계적으로 대응하기 위해서는 토석류가 발생하는 위치의 지형 및 지질 그리고 유발요인 같은 토석류 특징에 대한 조사와 분석이 필요하다. 이 논문에서는 최근 5년간 고속도로에 피해를 유발시킨 48개소의 토석류에 대하여 유역의 지형 및 토석류 유발 강우자료를 조사, 분석하였다. 토석류는 $0.01{\sim}0.65km^2$의 크기를 갖는 규모의 유역에서 발생하였고 집중강우 시 약 $29{\sim}55^{\circ}$ 지형경사를 갖는 자연사면의 표면 파괴에 의해 주로 시작하는 것으로 나타났다. 토석류 유발강우의 경우 재현빈도 2년에서 5년의 강우에도 토석류가 발생할 수 있으며 토석류의 규모는 동일한 유역이라도 강우강도 및 누적강우특성에 따라 달라질 수 있음을 확인하였다.

Characterization Of Rainrate Fields Using A Multi-Dimensional Precipitation Model

  • Yoo, Chul-sang;Kwon, Snag-woo
    • Water Engineering Research
    • /
    • 제1권2호
    • /
    • pp.147-158
    • /
    • 2000
  • In this study, we characterized the seasonal variation of rainrate fields in the Han river basin using the WGR multi-dimensional precipitation model (Waymire, Gupta, and Rodriguez-Iturbe, 1984) by estimating and comparing the parameters derived for each month and for the plain area, the mountain area and overall basin, respectively. The first-and second-order statistics derived from observed point gauge data were used to estimate the model parameters based on the Davidon-Fletcher-Powell algorithm of optimization. As a result of the study, we can find that the higher rainfall amount during summer is mainly due to the arrival rate of rain bands, mean number of cells per cluster potential center, and raincell intensity. However, other parameters controlling the mean number of rain cells per cluster, the cellular birth rate, and the mean cell age are found invariant to the rainfall amounts. In the application to the downstream plain area and upstream mountain area of the Han river basin, we found that the number of storms in the mountain area was estimated a little higher than that in the plain area, but the cell intensity in the mountain area a little lower than that in the plain area. Thus, in the mountain area more frequent but less intense storms can be expected due to the orographic effect, but the total amount of rainfall in a given period seems to remain the same.

  • PDF

MaxEnt 모형을 이용한 기후변화에 따른 산사태 발생가능성 예측 (Prediction of Landslides Occurrence Probability under Climate Change using MaxEnt Model)

  • 김호걸;이동근;모용원;길승호;박찬;이수재
    • 환경영향평가
    • /
    • 제22권1호
    • /
    • pp.39-50
    • /
    • 2013
  • Occurrence of landslides has been increasing due to extreme weather events(e.g. heavy rainfall, torrential rains) by climate change. Pyeongchang, Korea had seriously been damaged by landslides caused by a typhoon, Ewiniar in 2006. Moreover, the frequency and intensity of landslides are increasing in summer due to torrential rain. Therefore, risk assessment and adaptation measure is urgently needed to build resilience. To support landslide adaptation measures, this study predicted landslides occurrence using MaxEnt model and suggested susceptibility map of landslides. Precipitation data of RCP 8.5 Climate change scenarios were used to analyze an impact of increase in rainfall in the future. In 2050 and 2090, the probability of landslides occurrence was predicted to increase. These were due to an increase in heavy rainfall and cumulative rainfall. As a result of analysis, factors that has major impact on landslide appeared to be climate factors, prediction accuracy of the model was very high(92%). In the future Pyeongchang will have serious rainfall compare to 2006 and more intense landslides area expected to increase. This study will help to establish adaptation measure against landslides due to heavy rainfall.

기획특집 - 우리의 물 문제 어떻게 해결할 것인가? (What Can We Do for Our Water Problem?)

  • 이원식
    • 기술사
    • /
    • 제42권3호
    • /
    • pp.22-26
    • /
    • 2009
  • As Korea's water resources are dominated by intense summer rainfall and steep mountainous territory, it is inevitable for most of the rainfall in Korea to flow into sea immediately and directly. It cannot help having severe conditions which droughts and floods occur repeatedly due to the seasonal and geological conditions in Korea. Those kinds of disasters will be expected more frequently and seriously in the future because of the unexpected climate changes in the world. Therefore, Korean government will plan to develop small and medium-size dams environmentally friendly, multi-regional water supply system continuously and alternative water resources such as river bank filtrations, rainwater storages and underground dams, in order to prevent floods as well as to secure stable water supply.

  • PDF