• Title/Summary/Keyword: Intelligent safety vehicle

Search Result 340, Processing Time 0.027 seconds

Consumers' Perception of Intelligent Vehicle (지능형 자동차에 대한 소비자의 인식 유형 연구)

  • Kim, Gibum;Lee, Hyejung;Lee, Jungwoo
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.12
    • /
    • pp.405-420
    • /
    • 2018
  • As the intelligent vehicle market continues to develop relevant technologies and services for consumers, it is necessary to understand the characteristics of potential consumers. The purpose of this study is to identify and understand the types of potential consumers of intelligent vehicle using the Q-methodology. A Q-frame was constructed using thirty six statements from intelligent vehicle related literature concerning core technology, technology acceptance and personal consumption value, legal system and policy and social awareness. Q-sorting and in-depth interviews were conducted using thirty nine P-samples snowballed. Analysis produced four types of potential consumers for intelligent vehicle: Smart Car Consumer, Reasonable Consumer, Safety Car Consumer, and Smart Device Consumer. Smart Car Consumer value the vehicle capability of intelligent vehicle as most important while Reasonable Consumer focus upon the economics of intelligent vehicle. Safety Car Consumer recognize the safety of intelligent vehicle as most important while Smart Device Consumer highly value the IT functions provided by intelligent vehicles. Across these four different types of consumers, preventing injuries of intelligent vehicle drivers turned out to be the most common critical factor in assessing intelligent vehicle. Implications for the intelligent vehicle market is discussed at the end with further studies needed.

Development of a coordinated control algorithm using steering torque overlay and differential braking for rear-side collision avoidance (측후방 충돌 회피를 위한 조향 보조 토크 및 차등 제동 분배 제어 알고리즘 개발)

  • Lee, Junyung;Kim, Dongwook;Yi, Kyongsu;Yoo, Hyunjae;Chong, Hyokjin;Ko, Bongchul
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.2
    • /
    • pp.24-31
    • /
    • 2013
  • This paper describes a coordinated control algorithm for rear-side collision avoidance. In order to assist driver actively and increase driver's safety, the proposed coordinated control algorithm is designed to combine lateral control using a steering torque overlay by Motor Driven Power Steering (MDPS) and differential braking by Vehicle Stability Control (VSC). The main objective of a combined control strategy is twofold. The one is to prevent the collision between the subject vehicle and approaching vehicle in the adjacent lanes. The other is to limit actuator's control inputs and vehicle dynamics to safe values for the assurance of the driver's comfort. In order to achieve these goals, the Lyapunov theory and LMI optimization methods has been employed. The proposed coordinated control algorithm for rear-side collision avoidance has been evaluated via simulation using CarSim and MATLAB/Simulink.

A Study of Authentication Scheme based on Personal Key for Safety Intelligent Vehicle (안전한 지능형 자동차를 위한 개인키 기반의 인증 기법에 관한 연구)

  • Lee, Keun-Ho
    • Journal of Digital Convergence
    • /
    • v.12 no.2
    • /
    • pp.549-554
    • /
    • 2014
  • Studies on the intelligent vehicles that are converged with IT and vehicular technologies are currently under active discussion. A variety of communication technologies for safety intelligent vehicle services are support. As such intelligent vehicles use communication technologies, they are exposed to the diverse factors of security threats. To conduct intelligent vehicle security authentication solutions, there are some factors that can be adopted ownership, knowledge and biometrics[6,7]. This paper proposes to analyze the factors to threaten intelligent vehicle, which are usually intruded through communication network system and the security solution using biometric authentication scheme. This study proposed above user's biometrics information-based authentication scheme that can solve the anticipated problems with an intelligent vehicle, which requires a higher level of security than existing authentication solution.

Age-related Deficits in Response Characteristics on Safety Warning of Intelligent Vehicle (지능형 자동차의 안전 경고음에 대한 고령운전자의 반응 특성)

  • Kim, Man-Ho;Lee, Yong-Tae;Son, Joon-Woo;Jang, Chee-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.12
    • /
    • pp.131-137
    • /
    • 2009
  • Recent technological advances made a vehicle more intelligent to increase safety and comfort. An intelligent vehicle provides drivers with safety warning information through audible sounds, visual displays, and tactile devices. However, elderly drivers have been known to decrease the physical and cognitive abilities such as muscular strength, hearing, eyesight, short term memory, and spatial perception. Therefore, possible age-related deficits should be considered to design an effective warning system. This paper aims to evaluate the impact of advancing age on response performance on audible safety warnings which are widely used for alerting driving hazards. In order to understand the effect of age-related hearing loss and movement slowing, three sound characteristics (frequency, intensity, and period) and three age groups (younger, middle, and older) are considered. Data was drawn from 38 drivers who drove a simulated rural road in a driving simulator. Experimental results show that age influences driver's response performance. In conclusion, the appropriate range of a warning sound is suggested.

Implement of Intelligent Head-Up Display for Vehicle (차량용 지능형 Head-Up Display의 적용 실험)

  • Son, Hui-Bae;Ban, Hyeong-Jin;Yang, Kwun;Rhee, Young-Chul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.3
    • /
    • pp.400-405
    • /
    • 2010
  • This paper deals with implementation of intelligent head up display for vehicle safety system. The Implanted new intelligent transport system offer the potential for improved vehicle to driver communication. The most commonly viewed information in a vehicle is from the Head up display, where speed, tachometer, engine RPM, navigation, engine temperature, fuel gauge, turn indicators and warning lights provide the driver with an array of fundamental information. TFT LCD, LCD Back light led, plane mirror, lens and controllers parts were designed to head up display system. Finally, In this paper, we analyze intelligent head up display system for vehicle of driver safety.

A Study of Intelligent Head Up Display System for Next Generation Vehicle (차세대 자동차를 위한 HUD 모니터 시스템에 관한 연구)

  • Yun, Sung-Ha;Son, Hui-Bae;Rhee, Young-Chul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.4 no.1
    • /
    • pp.23-31
    • /
    • 2011
  • In this paper, the intelligent smart monitor system is implemented for the next generation vehicle. to mitigate the numerous effects of distractions within the vehicle, it is vital to put critical information where the driver can use it without affection focus on the road ahead. Audible alarms are useful supplements when used in conjunction with visual displays. But driving is an overwhelmingly visual task. To optimize a vehicle's active safety systems, more than just audible alarms are necessary. The driver needs a visual interface that focuses his or her attention on the road ahead. The most commonly viewed information in a vehicle is from the instrument cluster, where speed, tachometer, fuel, engine temperature, fuel gauge, turn indicators and warning lights provide the driver with an array of fundamental information. TFT LCD, LCD Back light led, plane mirror, lens and controllers parts were designed to intelligent integrated smart monitor system. Finally, in this paper, we analyze intelligent integrated smart monitor system for driver safety vehicles.

Development of Quantitative Methods for Evaluating Failure Safety of Level 3 Autonomous Vehicles (SAE Level 3 자율주행자동차의 고장 안전성 정량적 평가 방법 개발에 관한 연구)

  • Kim, Dooyong;Lee, Sangyeop;Lee, Hyuckkee;Choi, Inseong;Shin, Jaekon;Park, Kihong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.1
    • /
    • pp.91-102
    • /
    • 2019
  • Autonomous vehicles can be exposed to severe danger when failure occurs in any of its components. For this reason many countries are making efforts on the legislative issue how to objectively evaluate failure safety of an autonomous vehicle when such a vehicle is commercially available to a customer in the near future. In level-3 automation, a driver must take over the control of his vehicle when failure occurs, and the driver's controllability must be secured for escape from the imminent danger. In this paper, quantitative methods have been developed for evaluating failure safety of the level-3 autonomous vehicle, and they were validated by simulation. And also, we confirmed that the proposed evaluation method can quantitatively evaluate the failure safety.

A Study of Head Up Display System for Next Generation Vehicle (차세대 자동차 통합스마트 모니터 시스템에 관한 연구)

  • Yun, Sung-Ha;Son, Hui-Bae;Rhee, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.3
    • /
    • pp.439-444
    • /
    • 2011
  • In this paper, we implemented the intelligent smart monitor system for next generation which is most commonly viewed information in a vehicle from the instrument cluster, where speed, tachometer, fuel, engine temperature, fuel gauge, turn indicators and warning lights and provide the driver with an array of informations. Designed Smart HUD(Head-Up-Display) monitor system is composed TFT LCD, LCD Back light led, plane mirror, lens and controllers parts and it was assembled to intelligent integrated smart monitor system. Finally, we analyze intelligent integrated smart monitor system for driver safety vehicles and present the possibility to apply to smart intelligent HUD total monitor system for next generation.

Development of a intelligent suspension displacement sensor for unified chassis control of advanced safety vehicle (고안전 차량의 통합섀시 제어를 위한 지능형 현가시스템 변위 센서 개발)

  • Yun, Duk-Sun;Lee, Chang-Seok;Baek, Seong-Hwan;Kang, Tae-Ho;Boo, Kwang-Suck
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.393-401
    • /
    • 2009
  • This paper describes development of a new displacement sensor for intelligent suspension system in which the damping force has been controlled by MR fluid. Most of the current vehicle height sensors have been installed at external place of the damper and connected to that by mechanical linkages so far. The developed sensor has a new mechanism which detects movement of the sensor rod same as connecting rod in the suspension damper by using a GMR Sensor and converts it to the relative displacement from an initial position.

Research on Information Providing Method for Intelligent Navigation System

  • Park, Hye-Sun;Kim, Kyong-Ho
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.5
    • /
    • pp.657-670
    • /
    • 2012
  • Background: Today, numerous telematics technologies, i.e., technologies developed by integrating telecommunications with information processing, are applied in vehicles. One such developmental application of this technology to vehicles is to increase the safety or convenience of drivers by providing them with necessary information such as warnings and information on emergencies and traffic situations. However, under certain conditions, there is a high probability of traffic accidents if the driving workload is high. Nowadays, the navigation system is frequently used in the vehicles, this system provides various information including route to the driver. But, the existing navigation systems are not only considered a driver's reaction but also provide unilaterally to the information regardless of them. Such one-side information service type may miss important information to the driver. In addition, it sometimes interferes safety driving. Objective: To solve this problem, the intelligent navigation system needs to the providing way that it checks the driver's reactions after providing information. Namely, if the driver passes the information received from the navigation, then the intelligent system provides more loudly and more frequently. Method: Therefore, in this study we introduce the intelligent navigation system that it automatically controls modality type and its strength when the driver misses or overlooks the information for their safety and entertainment and we analyze the driver's cognitive responses about the modality type and its strength. Results: To evaluate the effectiveness of the proposed system, we analyzed the reaction time and driving workload for each type of the information, modality and its strength. Also we evaluated the users' subjective satisfaction and understanding based on a questionnaire.