• 제목/요약/키워드: Intelligent optimization methods

검색결과 139건 처리시간 0.018초

An Efficient Optimization Technique for Node Clustering in VANETs Using Gray Wolf Optimization

  • Khan, Muhammad Fahad;Aadil, Farhan;Maqsood, Muazzam;Khan, Salabat;Bukhari, Bilal Haider
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권9호
    • /
    • pp.4228-4247
    • /
    • 2018
  • Many methods have been developed for the vehicles to create clusters in vehicular ad hoc networks (VANETs). Usually, nodes are vehicles in the VANETs, and they are dynamic in nature. Clusters of vehicles are made for making the communication between the network nodes. Cluster Heads (CHs) are selected in each cluster for managing the whole cluster. This CH maintains the communication in the same cluster and with outside the other cluster. The lifetime of the cluster should be longer for increasing the performance of the network. Meanwhile, lesser the CH's in the network also lead to efficient communication in the VANETs. In this paper, a novel algorithm for clustering which is based on the social behavior of Gray Wolf Optimization (GWO) for VANET named as Intelligent Clustering using Gray Wolf Optimization (ICGWO) is proposed. This clustering based algorithm provides the optimized solution for smooth and robust communication in the VANETs. The key parameters of proposed algorithm are grid size, load balance factor (LBF), the speed of the nodes, directions and transmission range. The ICGWO is compared with the well-known meta-heuristics, Multi-Objective Particle Swarm Optimization (MOPSO) and Comprehensive Learning Particle Swarm Optimization (CLPSO) for clustering in VANETs. Experiments are performed by varying the key parameters of the ICGWO, for measuring the effectiveness of the proposed algorithm. These parameters include grid sizes, transmission ranges, and a number of nodes. The effectiveness of the proposed algorithm is evaluated in terms of optimization of number of cluster with respect to transmission range, grid size and number of nodes. ICGWO selects the 10% of the nodes as CHs where as CLPSO and MOPSO selects the 13% and 14% respectively.

GBAM 모델을 위한 새로운 설계방법 (A New Design Method for the GBAM (General Bidirectional Associative Memory) Model)

  • 박주영;임채환;김혜연
    • 한국지능시스템학회논문지
    • /
    • 제11권4호
    • /
    • pp.340-346
    • /
    • 2001
  • 본 논문은 GBAM (general bidirectional associative memory) 모델을 위한 새로운 설계방법을 제시한다. GBAM 모델에 대한 이론적 고찰을 바탕으로, GBAM 기방 양방향 연상 메모리의 설계 문제가 GEVP (generalized eigenvalue problem)로 불리는 최적화 문제로 표현될 수 있음을 밝힌다. 설계 과정에서 등장하는 GEVP 문제들은 최근에 개발된 내부점 방법에 의하여 주어진 허용 오차 이내에서 효과적으로 풀릴 수 있으므로, 본 논문에서 확립된 설계 절차는 매우 실용적이다. 제안된 설계 절차에 대한 적용 가능성은 관련 연구에서 고려되었던 간단한 설계 예제를 통하여 예시된다.

  • PDF

Approximate Dynamic Programming-Based Dynamic Portfolio Optimization for Constrained Index Tracking

  • Park, Jooyoung;Yang, Dongsu;Park, Kyungwook
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제13권1호
    • /
    • pp.19-30
    • /
    • 2013
  • Recently, the constrained index tracking problem, in which the task of trading a set of stocks is performed so as to closely follow an index value under some constraints, has often been considered as an important application domain for control theory. Because this problem can be conveniently viewed and formulated as an optimal decision-making problem in a highly uncertain and stochastic environment, approaches based on stochastic optimal control methods are particularly pertinent. Since stochastic optimal control problems cannot be solved exactly except in very simple cases, approximations are required in most practical problems to obtain good suboptimal policies. In this paper, we present a procedure for finding a suboptimal solution to the constrained index tracking problem based on approximate dynamic programming. Illustrative simulation results show that this procedure works well when applied to a set of real financial market data.

Fast Evolution by Multiple Offspring Competition for Genetic Algorithms

  • Jung, Sung-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제10권4호
    • /
    • pp.263-268
    • /
    • 2010
  • The premature convergence of genetic algorithms (GAs) is the most major factor of slow evolution of GAs. In this paper we propose a novel method to solve this problem through competition of multiple offspring of in dividuals. Unlike existing methods, each parents in our method generates multiple offspring and then generated multiple offspring compete each other, finally winner offspring become to real offspring. From this multiple offspring competition, our GA rarel falls into the premature convergence and easily gets out of the local optimum areas without negative effects. This makes our GA fast evolve to the global optimum. Experimental results with four function optimization problems showed that our method was superior to the original GA and had similar performances to the best ones of queen-bee GA with best parameters.

Derivative Evaluation and Conditional Random Selection for Accelerating Genetic Algorithms

  • Jung, Sung-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권1호
    • /
    • pp.21-28
    • /
    • 2005
  • This paper proposes a new method for accelerating the search speed of genetic algorithms by taking derivative evaluation and conditional random selection into account in their evolution process. Derivative evaluation makes genetic algorithms focus on the individuals whose fitness is rapidly increased. This accelerates the search speed of genetic algorithms by enhancing exploitation like steepest descent methods but also increases the possibility of a premature convergence that means most individuals after a few generations approach to local optima. On the other hand, derivative evaluation under a premature convergence helps genetic algorithms escape the local optima by enhancing exploration. If GAs fall into a premature convergence, random selection is used in order to help escaping local optimum, but its effects are not large. We experimented our method with one combinatorial problem and five complex function optimization problems. Experimental results showed that our method was superior to the simple genetic algorithm especially when the search space is large.

Development of Query Transformation Method by Cost Optimization

  • Altayeva, Aigerim Bakatkaliyevna;Yoon, Youngmi;Cho, Young Im
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제16권1호
    • /
    • pp.36-43
    • /
    • 2016
  • The transformation time among queries in the database management system (DBMS) is responsible for the execution time of users' queries, because a conventional DBMS does not consider the transformation cost when queries are transformed for execution. To reduce the transformation time (cost reduction) during execution, we propose an optimal query transformation method by exploring queries from a cost-based point of view. This cost-based point of view means considering the cost whenever queries are transformed for execution. Toward that end, we explore and compare set off heuristic, linear, and exhaustive cost-based transformations. Further, we describe practical methods of cost-based transformation integration and some query transformation problems. Our results show that, some cost-based transformations significantly improve query execution time. For instance, linear and heuristic transformed queries work 43% and 74% better than exhaustive queries.

유전자 알고리즘을 이용한 FNNs 기반 비선형공정시스템 모델의 최적화 (Optimization of Fuzzy Neural Network based Nonlinear Process System Model using Genetic Algorithm)

  • 최재호;오성권;안태천
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1997년도 춘계학술대회 학술발표 논문집
    • /
    • pp.267-270
    • /
    • 1997
  • In this paper, we proposed an optimazation method using Genetic Algorithm for nonlinear system modeling. Fuzzy Neural Network(FNNs) was used as basic model of nonlinear system. FNNs was fused of Fuzzy Inference which has linguistic property and Neural Network which has learning ability and high tolerence level. This paper, We used FNNs which was proposed by Yamakawa. The FNNs was composed Simple Inference and Error Back Propagation Algorithm. To obtain optimal model, parameter of membership function, learning rate and momentum coefficient of FNNs are tuned using genetic algorithm. And we used simplex algorithm additionaly to overcome limit of genetic algorithm. For the purpose of evaluation of proposed method, we applied proposed method to traffic choice process and waste water treatment process, and then obtained more precise model than other previous optimization methods and objective model.

  • PDF

Cluster Analysis of Incomplete Microarray Data with Fuzzy Clustering

  • Kim, Dae-Won
    • 한국지능시스템학회논문지
    • /
    • 제17권3호
    • /
    • pp.397-402
    • /
    • 2007
  • In this paper, we present a method for clustering incomplete Microarray data using alternating optimization in which a prior imputation method is not required. To reduce the influence of imputation in preprocessing, we take an alternative optimization approach to find better estimates during iterative clustering process. This method improves the estimates of missing values by exploiting the cluster Information such as cluster centroids and all available non-missing values in each iteration. The clustering results of the proposed method are more significantly relevant to the biological gene annotations than those of other methods, indicating its effectiveness and potential for clustering incomplete gene expression data.

Design of Fractional Order Controller Based on Particle Swarm Optimization

  • Cao, Jun-Yi;Cao, Bing-Gang
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권6호
    • /
    • pp.775-781
    • /
    • 2006
  • An intelligent optimization method for designing Fractional Order PID(FOPID) controllers based on Particle Swarm Optimization(PSO) is presented in this paper. Fractional calculus can provide novel and higher performance extension for FOPID controllers. However, the difficulties of designing FOPID controllers increase, because FOPID controllers append derivative order and integral order in comparison with traditional PID controllers. To design the parameters of FOPID controllers, the enhanced PSO algorithms is adopted, which guarantee the particle position inside the defined search spaces with momentum factor. The optimization performance target is the weighted combination of ITAE and control input. The numerical realization of FOPID controllers uses the methods of Tustin operator and continued fraction expansion. Experimental results show the proposed design method can design effectively the parameters of FOPID controllers.

비 신호 교차로에서 CIM을 위한 지능형 차량 제어기법 분석 (Analysis of Intelligent Vehicle Control Methods for CIM at Non-signalized Intersections)

  • 주현진;임유진
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제8권2호
    • /
    • pp.33-40
    • /
    • 2018
  • 현재 산업계와 학계에서는 커넥티드 카(connected car) 시스템에 대한 연구가 활발하게 진행되고 있다. 커넥티드 카는 IT기술이 융합된 스마트(smart)한 자동차로서 사람, 차량, 교통관리 시스템과 모두 연결되어 있다. 커넥티드 카의 주행을 위해 차량과 인프라(infrastructure) 간의 연결 기술인 V2I(vehicle to infrastructure) 통신이 중요하다. CIM(cooperative intersection management)은 차량과 인프라 사이에서 통신을 관리하는 장치이다. 본 논문에서는 CIM을 사용해 교차로에서 차량을 제어하는 두 가지 기법에 대해 분석한다. 첫 번째 기법은 자원화 된 교차로 예약을 통해 교차로를 지나간다. 두 번째 기법은 미리 계획된 차량의 궤도 패턴을 분류하여 교차로를 통과한다. 이러한 자원예약과 궤도계획을 DP(dynamiac programming)기법과 ACO(ant colony optimization)기법으로 차량을 제어하는 사례연구에 대해 분석한다. 본 기법은 차량에게 중요도를 부여하거나 속도를 조절하여 상황에 맞게 합리적으로 기법을 향상시킬 수 있다.