
Original Article
International Journal of Fuzzy Logic and Intelligent Systems
Vol. 16, No. 1, March 2016, pp. 36-43
http://dx.doi.org/10.5391/IJFIS.2016.16.1.36

ISSN(Print) 1598-2645
ISSN(Online) 2093-744X

Development of Query Transformation
Method by Cost Optimization
Aigerim Bakatkaliyevna Altayeva, Youngmi Yoon, and Young Im Cho
Department of Computer Engineering, Gachon University, Seongnam, Korea

Abstract

The transformation time among queries in the database management system (DBMS) is
responsible for the execution time of users’ queries, because a conventional DBMS does
not consider the transformation cost when queries are transformed for execution. To reduce
the transformation time (cost reduction) during execution, we propose an optimal query
transformation method by exploring queries from a cost-based point of view. This cost-based
point of view means considering the cost whenever queries are transformed for execution.
Toward that end, we explore and compare set off heuristic, linear, and exhaustive cost-
based transformations. Further, we describe practical methods of cost-based transformation
integration and some query transformation problems. Our results show that, some cost-based
transformations significantly improve query execution time. For instance, linear and heuristic
transformed queries work 43% and 74% better than exhaustive queries.

Keywords: Cost-based transformation, Join, Optimization, Oracle DBMS, Subquery,
Window function

Received: Dec. 8, 2015
Revised : Mar. 20, 2016
Accepted: Mar. 22, 2016

Correspondence to: Young Im Cho
(yicho@gachon.ac.kr)
©The Korean Institute of Intelligent Systems

cc©This is an Open Access article dis-
tributed under the terms of the Creative
Commons Attribution Non-Commercial Li-
cense (http://creativecommons.org/licenses/
by-nc/3.0/) which permits unrestricted non-
commercial use, distribution, and reproduc-
tion in any medium, provided the original
work is properly cited.

1. Introduction

Database performance is one of the main challenging aspects of database operations organiza-
tion. Conventional database query optimization normally consists of two stages of processing:
logical and physical optimization. At the stage of a given query, optimization logic is rewritten
(usually on the basis of heuristics or rules) to an equivalent but potentially more declarative or
optimal form. The traditional physical optimizer works within one block of the request, which
operates a plurality of base tables with limits of projection and connection.

In general, the transformation time among queries in the DBMS is mainly responsible for
the execution time of users’ queries, because a conventional DBMS does not consider the
transformation cost when queries are transformed for execution. To reduce the transformation
time (cost reduction) during execution, we propose an optimal query transformation method
by exploring queries from a cost-based point of view. This cost-based point of view means
considering the cost whenever queries are transformed for execution.

The motivation of our paper is exploring database query transformation methods and to
determine which method is best from the cost-based point of view. After determining the best
method, we replace the queries with the low-cost equivalent and reduce the database query
cost. To achieve the goal, we explore exhaustive, linear, and heuristic query transformation
methods. In the experimental part, we execute all queries separately and set of queries by
transformation type. After determining the execution types, we can determine which type of

| 36

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/


International Journal of Fuzzy Logic and Intelligent Systems, vol. 16, no. 1, March 2016

method is better.

The rest of this paper consists of four sections. We will
explain the related work in Section 2, our proposed method in
Section 3, and the simulation results in Section 4. Finally, we
will conclude our paper in Section 5.

2. Related Work

The system conversion requests based on rules can be exhaus-
tively listed by the thick wood conversion [1] and to assess the
final plans; this leads to an exponential increase in the number
of plans, and may be unsuitable for commercial optimizers.
Garcia-Molina et al. [1] showed that for some queries, an ex-
ternal connection can switch to the internal connections by
introducing the concept of a generalized external connection.
A study was conducted to optimize the unification of the two-
phase reform. Chaudhuri and Shim [2] explored generation of a
plan optimizer to offer a conversion and attempt to apply it. In
addition, Chaudhuri and Shim [2] defined a similar transforma-
tion based on pulling and pushing units, but also demonstrated
how this conversion can be performed on the basis of valua-
tion. In addition, they proposed the concept of rewriting that
is sensitive to the cost. In Galindo-Legaria and Rosenthal [3]
and Ganske [4], work query transformation cannot eliminate
nesting in queries with subqueries. In our experience, with the
exception of nested sub-queries, which lead to the generation of
ideas, it does not always provide a more effective plan. Garcia-
Molina et al. [1] and Grief et al. explored similar methods
to eliminate nesting sub-queries SPJ-actively studied for solv-
ing sub-queries with aggregates. Chaudhuri [5] and Gupta [7]
demonstrated conversion assemblies that are pushed into the
position preceding the connection. Chaudhuri [1] examined
whether a greedy and conservative heuristics leads to cheaper
scanning or connection. Gupta [7] demonstrated a canonical
abstraction external connection, which allows the optimizer to
use different formations among tables joined externally and
internally.

Heller stein [8] and Levy [9] proposed a method that is a
synthesis of these approaches by drawing predicates up the tree
query, and then pushing them down, so that when scanning the
base table, a greater number of single-table predicates can be
used. Kim [10] and Morzy [11] described the transformation
of logical sets (magic set), which leads to new insights into the
costly units’ request, thus allowing the volume of data being
processed to be reduced.

One problem with most of these translation schemes is that

Figure 1. Human resources (HR) schema.

they require knowledge of the semantics of the source schema,
and thus they are intended to be performed manually by a
database designer. Another problem is that there were no com-
parisons between sets of queries, and just single query transfor-
mation results were performed. In this study, we compare each
query transformation result separately, and set of queries for
each heuristic, linear, and exhaustive search. Further, we give
the common query execution time, by comparing the results
obtained for each type of query transformation.

3. Proposed Optimized Query Transformation
Method

3.1 Multiple Query Transformations

For multiple query transformation, we use Human Resources
(HR) and Order Entry (OE) schemes from Oracle Academy
that consist of the following seven tables, as shown in Fig-
ure 1 (employees, departments, locations, countries, regions,
jobs, and job history), and order items, orders, customers, prod-
uct information, product description, inventories, and ware-
houses.

We know that the requests may be expressed in a number
of different forms. Furthermore, even within a given language,
each request can be a series of semantically equivalent expres-
sions [1, 4]. The subject of this section is the transformation of
a query expression into an equivalent expression on the basis
of properly defined rules. Here is an example in Q1 that shows
how to compare the wages of each employee to the average
wage in the division where he or she works:

37 | Aigerim Bakatkaliyevna Altayeva, Youngmi Yoon, and Young Im Cho



http://dx.doi.org/10.5391/IJFIS.2016.16.1.36

Figure 2. Query processing in Oracle database management system.

Moreover, we use window functions to improve the query
execution time. In Q2 we use the window function, which
provides the aggregate sum of all the rows Figure 3 and Table
2, and its resulting data would look like this:

We consider some selection approaches as heuristic, exhaus-
tive, and linear selection. In exhaustive search, the prices of all
possible physical query plans derivable from the logical query
plan are considered, and the least expensive plan is chosen [6].
In heuristic selection, a sequence of choices for annotations is
made on the basis of heuristics [8]. Linear search is based on the
search of the dynamic programming approach, which assumes
that for a query consisting of several objects, it is sufficient to
analyze the conversion for only a subset of these objects, and
then expand it with additional transformations of other objects
[11].

Oracle performs multiple query transformations, some of
which are cost based and others are heuristic based. Cost-based
transformation is combined with logic and physical optimiza-
tion to generate an optimal execution plan. This is illustrated in
Figure 2.

It can be assumed that the logical transformation has two sep-
arate components: heuristic-based conversion and cost-based
conversion. Different elements of wood used different conver-
sion requests.

3.2 State Space Search Methods

The fundamental question related to transformations based on
the evaluation value is whether these changes will lead to the
rapid growth of combinatorial alternatives that must be assessed,
and if they provide a balance between cost optimization and
cost performance.

Exhaustive Search. If we consider an exhaustive search of
all possible states, n 2N status of space objects. For example,
for the query Q11, we consider the four states (0,0), (0,1), (1,0),
and (1,1). This search is guaranteed to find the best solution.

Iterative Improvement. The Iterative Improvement method is
used to reduce the search space. The main idea of this method
is that we start with some initial condition and move to the next
adjacent of using some of the techniques aimed at finding a local
minimum by continuously selecting the downward direction of
movement.

Linear Search. This method is based on the search of the
dynamic programming approach, which assumes that in a query
consisting of several objects, it is sufficient to analyze the con-
version for only a subset of these objects, and then expand it
with additional transformations of other objects.

3.3 Query Transformation Methods

Traditional transformation was performed based on heuristics
for early selection operations and projection removing redun-
dant operations, minimizing the number of request blocks. Min-
imizing the number of request blocks by merging them with
other blocks a request to remove the restrictions set permuta-
tion operations compounds that can be generated, allowing thus
reordered more tables.

Subquery Un-nesting. An important transformation, which is
usually implemented by a commercial DBMS. Subquery nest-
ing is calculated with unresolved several times using a tuple
iteration semantics (TIS), which is similar to the connection ex-
ecution nested loops, and therefore in this case cannot be taken
into account many effective ways to access and serial connec-
tion. Consider the following query Q3 that returns information
about department staff who receive high salaries:

This query is transformed into the following equivalent query
Q4:

www.ijfis.org Development of Query Transformation Method by Cost Optimization | 38



International Journal of Fuzzy Logic and Intelligent Systems, vol. 16, no. 1, March 2016

Transformation merges with the outer query sub query gener-
ally allows additional methods and compounds of the sequence
of operations.

Join Elimination removes the table from the query, if there
are restrictions on the join column of the table, such that the
elimination of the compound does not affect the results of the
query. Consider the following two queries Q5 and Q6, which
selects some information about employees:

Because department id in the employees table is a foreign
key, referencing the primary key of the table departments, the
connection to the departments of Q5 can be eliminated. The
request Q6 Connection column in the right table of external
connections is unique. Because the outer join contains all tuples
left the table, and equijoin with a unique column does not create
a duplicate table departments be deleted.

Use of the compounds to eliminate the transformation of
Q5 and Q6 leads to the generation of the query Q7. If Q5
e.department id may contain null values, the section of WHERE
Q7 must be added to the predicate e.department id is not null.

Obviously, the elimination of redundant connections to im-
prove query performance, and therefore the elimination of con-
nections, is always executed in Oracle, if appropriate.

In Filter Predicate Move Around predicates, cheap shifted
to block the submission of requests for the performance of the
earlier filter. Consider a query Q8 with two disjunctive sub-
queries with EXISTS; sub-queries contain the same predicate
correlated, but different conjunctive predicate filtering:

Splicing together two EXISTS sub-queries with a single
EXIST sub query with a disjunction predicate filtering results
in the query Q9:

Group Pruning, another imperative transformation that re-
moves the representations of the group, is not required in the
outer query block. Expression SQL CUBE is an extension of the
operator-SQL, which allows multiple clusters to be retrieved in
a single SQL statement for queries that contain representations
with expressions cube, sometimes the amount of data needed to
assess the request can be reduced. For example, consider the
following query Q10:

Query Q10 can be transformed to the Q11 query:

3.4 Cost-Based Transformation Methods

Here we will briefly discuss some of the changes that are per-
formed in Oracle-based valuation.

In the case of multiple sub-queries with EXISTS or ANY,
as a rule, it is not possible simply to merge sub-queries with
a query containing the same unit, owing to the possible unde-
sirable effect of the occurrence of duplicate rows that were not
in the results of the original query. In these cases, we should
create embedded views that contain table sub-queries to elimi-
nate nesting correlated sub-queries containing aggregates also

39 | Aigerim Bakatkaliyevna Altayeva, Youngmi Yoon, and Young Im Cho



http://dx.doi.org/10.5391/IJFIS.2016.16.1.36

requires the creation of embedded representations with GROUP
BY. Once again consider the request Q12:

Consider the transformed query Q13, which first nested the
sub-query resolved by the formation of the built-in views:

The untransformed query Q12 may be better performed using
a strategy TIS, if the outer query block significantly reduces the
number of tuples of the table employee, for which the excess
of the average wage is to be calculated. In addition, TIS can
be very effective if the local column predicate has a correlation
index.

Group-by View Merging allows one to merge the presen-
tation, comprising the steps of GROUP BY (or DISTINCT),
with its external power request. This allows the optimizer to
consider additional join orders and access paths and to postpone
the calculation of aggregates until the connection is completed.
Consider query Q14, which is obtained by the merger of views
with a GROUP BY clause in the query Q13. The transformed
query Q13 requires that aggregation be performed on the entire
table of employees. The conversion request Q14 connects two
employee’s tables and the table job history, and applies a second
filtering sub query before aggregation is performed:

These considerations are the basis for why the decision
should be based on an assessment of the cost. For queries
that aggregate the latter, we also consider the possibility of
converting the query to perform early aggregation.

The Join Predicate Pushdown transformation encounters join
predicates within the view. Pushes join predicates, and being
within the view, they act like the correlation, thus making a new
path available.

A similar optimization is possible for submissions to the
operation DISTINCT, as shown in the query Q15. Consider the
following query that returns information about the employees
and work history (job history) of staff (employees) who are
working in offices (departments) located in the United Kingdom
(UK) and the United States (US):

Query Q15 is converted on the basis of the push join pred-
icate to Query Q16. This transformation allows us to delete
from the expensive operation DISTINCT. The internal (inner)
compound is converted into a semi-join that imposes a partial
order connection, where e1 must precede V:

In Q16 for connecting the V method can be used nested
loops; it can be quite effective if d.department id is an index,
and the number of tuples in the outer query is relatively small.
Nevertheless, determining which of the requests Q15 and Q16

www.ijfis.org Development of Query Transformation Method by Cost Optimization | 40



International Journal of Fuzzy Logic and Intelligent Systems, vol. 16, no. 1, March 2016

will provide a more optimal execution plan requires a decision
based on the evaluation value. In Oracle, pushing join pred-
icates can be applied to stick together, and to non-drainable
representations.

Join Factorization is used for queries with UNION/UNION
ALL, UNION ALL branches which contain general joined the
table. This factorization prevents multiple accesses to shared
tables. Using factorization connections, query Q17 can be
converted to a query Q18:

Predicate Pull-up filtration pulls expensive filtering pred-
icates in the query from the view containing the submission.
Currently, a predicate is considered expensive if it contains SQL
procedural functions, user-defined operations, or sub-queries.
Convert “Predicate Pull-up” is being taken into consideration
only if the query containing view set predicate grownup and
representation has a blocking operation. Consider the following
query, Q19, which contains the presentation of two expensive
predicates:

Because the introduction of an expensive predicate has two,
there are three ways in which the conversion can be accom-
plished predicate drawing, one of which is shown below:

Figure 3. Comparison of query execution time between Q2 and Q3
queries.

Table 1. Query execution times of group pruning queries

Row count 100 1,000 150,000 200,000 250,000 300,000

Query execution time
of Q9 (s)

132 152 201 239 281 392

Query execution time
of Q10 (s)

91 114 178 181 196 347

Running late check expensive predicate to a significant re-
duction in the data set can, in some cases, improve query per-
formance. If filtered predicates have very few lines, we can
avoid implementing expensive predicates on the full data set.
This transformation acts in the opposite way with respect to
the common method of optimizing push into view predicate
filtering.

4. Experiment Results

We conducted experiments to study the efficiency of conversion
requests, cost-based values. To run queries, we use Oracle 11g
PL SQL Developer 3.2 Platform that includes HR, OE, and
Financial schemes (Figures 1 and 2). We compared the query
execution times of each query separately and each type of set
of queries, such as heuristic-based and cost-based queries. In
addition, query performance and query execution times are
compared.

In Figure 3, we compare the query execution times of two
queries for 1,000, 50,000, and 300,000 rows of data.

41 | Aigerim Bakatkaliyevna Altayeva, Youngmi Yoon, and Young Im Cho



http://dx.doi.org/10.5391/IJFIS.2016.16.1.36

Figure 4. Comparison execution times between Q9 and Q10 queries
for tables with from 50,000 to 300,000 rows.

In Figure 4, the execution times of two queries using sub
query (Q9) and join (Q10) for 100, 1000, 10,000, 20,000, and
50,000 rows of records can be seen. It is clear that using join
results in much better performance than sub-queries. In the
case of group pruning for CUBE queries, we run queries for the
same table with rows from 50,000 to 300,000 rows, and Q10
has 15% less execution time that Q9 (Figure 4).

This includes SQL becomes much less aggregation, because
the amount of data that must be broken is vastly reduced and
the number of units is further reduced. This is an important
transformation for SQL generators in analytical applications,
because these tools may need to request logical “cubes” that
were previously defined with a view containing the operator
CUBE. Figure 4 shows comparison of the execution times for
each experiment from 50,000 to 300,000 rows. In Figure 5,
it is observed that the execution time of Q19 is less than the
execution time of Q20. Figure 5 shows the result of queries
with a sub query and the MINUS set operation.

One of the main problems of transformation based on an
assessment of cost optimization is to increase the time. We have
noted that in the experiments described in the previous sections,
the optimization time increased.

In Table 3, we present the optimization time and the number
of states for a variety of search strategies in the state space
for a single query, with a transformation to eliminate nesting.
The increased optimization time for different search strategies
compared to the heuristic mode (that is, without change, based
on an assessment of the value) is not significant owing to the
reuse of the annotations cost sub trees request.

Figure 5. Comparison of execution times between Q19 and Q20
queries for tables from 100 to 50,000 rows.

Table 2. Comparison with query optimization time

Optimization time (ms)
Heuristic 452

Linear 987

Exhaustive 1756

5. Conclusion

The paper explored query transformation methods and their
performance based on two types of experiments: The first one
compared the results of single queries, and the second one com-
pared query set results of each optimization type. During the
research, heuristic, linear, and exhaustive cost-based transforma-
tions were explored, and their execution times were compared
with experiments to determine the best method depending on
the query types.

Conflict of Interest

No potential conflict of interest relevant to this article was
reported.

Acknowledgements

This work was funded by the National Reseach Foundation
(NRF) in Korea Government (Ministry of Science, ICT & Fu-
ture Planning) (No. 2015R1A2A2A03004088) and by Small &
Medium Business Administration’s University–Industry Coop-
eration project (No. C0298842).

www.ijfis.org Development of Query Transformation Method by Cost Optimization | 42



International Journal of Fuzzy Logic and Intelligent Systems, vol. 16, no. 1, March 2016

References

[1] H. Garcia-Molina, J. D. Ullman, and J. Widom, Database
System Implementation. Upper Saddle River, NJ: Prentice
Hall, 2000.

[2] S. Chaudhuri and K. Shim, “Optimizing queries with ag-
gregate views,” in Proceedings of 5th International Con-
ference on Extending Database Technology, Avignon,
France, 1996, pp. 167-182. http://dx.doi.org/10.1007/
BFb0014151

[3] C. Galindo-Legaria and A. Rosenthal, “Outerjoin sim-
plification and reordering for query optimization,” ACM
Transactions on Database Systems, vol. 22, no. 1, pp.
43-74, 1997. http://dx.doi.org/10.1145/244810.244812

[4] C. Fraser, L. Giakoumakis, V. Hamine, and K. F. Moore-
Smith, “Testing cardinality estimation models in SQL
server,” in Proceedings of 5th International Workshop on
Testing Database Systems (DBTest’12), Scottsdale, AZ,
2012. http://dx.doi.org/10.1145/2304510.2304526

[5] T. Neumann, “Query simplification: graceful degrada-
tion for join-order optimization,” in Proceedings of ACM
SIGMOD International Conference on Management of
data (SIGMOD’09), Providence, RI, 2009, pp. 403-414.
http://dx.doi.org/10.1145/1559845.1559889

[6] T. Neumann and C. Galindo-Legaria, “Taking the edge
off cardinality estimation errors using incremental execu-
tion,” in Proceedings of Datenbanksysteme fur Business,
Technologie und Web (BTW2013), Magdeburg, Germany,
2013, pp. 73-92.

[7] W. Wu, Y. Chi, S. Zhu, J. Tatemura, H. Hacigumus, and
J. F. Naughton, “Predicting query execution time: are op-
timizer cost models really unusable?,” in Proceedings of
IEEE 29th International Conference on Data Engineer-
ing (ICDE’13), Brisbane, Australia, 2013, pp. 1081-1092.
http://dx.doi.org/10.1109/ICDE.2013.6544899

[8] G. Lohman, “Is query optimization a “solved” problem?,”
Available http://wp.sigmod.org/?p=1075

[9] S. Chaudhuri, “Query optimizers: time to rethink the con-
tract?,” in Proceedings of ACM SIGMOD International
Conference on Management of data (SIGMOD’09), Provi-
dence, RI, 2009, pp. 961-968. http://dx.doi.org/10.1145/
1559845.1559955

[10] S. Bellamkonda, H. G. Li, U. Jagtap, Y. Zhu, V. Liang, and
T. Cruanes, “Adaptive and big data scale parallel execution
in oracle,” Proceedings of the VLDB Endowment, vol. 6,
no. 11, pp. 1102-1113, 2013. http://dx.doi.org/10.14778/
2536222.2536235

[11] F. Liu and S. Blanas, “Forecasting the cost of process-
ing multi-join queries via hashing for main-memory
databases,” in Proceedings of the 6th ACM Symposium on
Cloud Computing (SoCC’15), Kohala Coast, HI, 2015, pp.
153-166. http://dx.doi.org/10.1145/2806777.2806944

[12] F. M. Waas, L. Giakoumakis, and S. Zhang, “Plan space
analysis: an early warning system to detect plan regres-
sions in cost-based optimizers,” in Proceedings of the
4th International Workshop on Testing Database Systems
(DBTest’11), Athens, Greece, 2011. http://dx.doi.org/10.
1145/1988842.1988844

Aigerim Bakatkaliyevna Altayeva received
her B.S., M.Sc., from the Department of Com-
puter Science, IITU, Kazakhstan, in 2012,
2014. She is a Ph.D. student at Gachon Uni-
versity. Her interesting part is AI, smart city,

big data etc.
Tel: +82-31-750-5800
E-mail: aikosha1703@gmail.com

Youngmi Yoon received her B.S from Seoul
National University in 1981; the M.S. from
Stanford University in 1984, and the Ph.D.
degree in computer science from Yonsei Uni-
versity in 2008. She is a professor at Gachon

University. Her research interest includes database, data mining,
and bioinformatics.
Tel: +82-31-750-4755
Fax: +82-31-750-5662
E-mail: ymyoon@gachon.ac.kr

Young Im Cho received her B.S., M.Sc., and
Ph.D. from the Department of Computer Sci-
ence, Korea University, Korea, in 1988, 1990
and 1994, respectively. She is a professor
at Gachon University. Her research interest

includes AI, big data, information retrieval, smart city etc.
Tel: +82-31-750-5800
Fax: +82-31-750-5662
E-mail: yicho@gachon.ac.kr

43 | Aigerim Bakatkaliyevna Altayeva, Youngmi Yoon, and Young Im Cho

http://dx.doi.org/10.1007/BFb0014151
http://dx.doi.org/10.1007/BFb0014151
http://dx.doi.org/10.1145/244810.244812
http://dx.doi.org/10.1145/2304510.2304526
http://dx.doi.org/10.1145/1559845.1559889
http://dx.doi.org/10.1109/ICDE.2013.6544899
http://wp.sigmod.org/?p=1075
http://dx.doi.org/10.1145/1559845.1559955
http://dx.doi.org/10.1145/1559845.1559955
http://dx.doi.org/10.14778/2536222.2536235
http://dx.doi.org/10.14778/2536222.2536235
http://dx.doi.org/10.1145/2806777.2806944
http://dx.doi.org/10.1145/1988842.1988844
http://dx.doi.org/10.1145/1988842.1988844

