• Title/Summary/Keyword: Intelligent Autonomous robots

Search Result 108, Processing Time 0.024 seconds

Event Cognition-based Daily Activity Prediction Using Wearable Sensors (웨어러블 센서를 이용한 사건인지 기반 일상 활동 예측)

  • Lee, Chung-Yeon;Kwak, Dong Hyun;Lee, Beom-Jin;Zhang, Byoung-Tak
    • Journal of KIISE
    • /
    • v.43 no.7
    • /
    • pp.781-785
    • /
    • 2016
  • Learning from human behaviors in the real world is essential for human-aware intelligent systems such as smart assistants and autonomous robots. Most of research focuses on correlations between sensory patterns and a label for each activity. However, human activity is a combination of several event contexts and is a narrative story in and of itself. We propose a novel approach of human activity prediction based on event cognition. Egocentric multi-sensor data are collected from an individual's daily life by using a wearable device and smartphone. Event contexts about location, scene and activities are then recognized, and finally the users" daily activities are predicted from a decision rule based on the event contexts. The proposed method has been evaluated on a wearable sensor data collected from the real world over 2 weeks by 2 people. Experimental results showed improved recognition accuracies when using the proposed method comparing to results directly using sensory features.

Object-based Compression of Thermal Infrared Images for Machine Vision (머신 비전을 위한 열 적외선 영상의 객체 기반 압축 기법)

  • Lee, Yegi;Kim, Shin;Lim, Hanshin;Choo, Hyon-Gon;Cheong, Won-Sik;Seo, Jeongil;Yoon, Kyoungro
    • Journal of Broadcast Engineering
    • /
    • v.26 no.6
    • /
    • pp.738-747
    • /
    • 2021
  • Today, with the improvement of deep learning technology, computer vision areas such as image classification, object detection, object segmentation, and object tracking have shown remarkable improvements. Various applications such as intelligent surveillance, robots, Internet of Things, and autonomous vehicles in combination with deep learning technology are being applied to actual industries. Accordingly, the requirement of an efficient compression method for video data is necessary for machine consumption as well as for human consumption. In this paper, we propose an object-based compression of thermal infrared images for machine vision. The input image is divided into object and background parts based on the object detection results to achieve efficient image compression and high neural network performance. The separated images are encoded in different compression ratios. The experimental result shows that the proposed method has superior compression efficiency with a maximum BD-rate value of -19.83% to the whole image compression done with VVC.

The Effects of Logistics Technology Acceptance in the Fourth Industrial Revolution on Logistics Safety Performance: The Moderated Mediating Effect of Logistics Safety Behavior through Safety Culture

  • Kim, Young-Min
    • Journal of Korea Trade
    • /
    • v.26 no.1
    • /
    • pp.57-80
    • /
    • 2022
  • Purpose - This study aims to examine the relationships between the acceptance of the 4th industrial revolution logistics technology, logistics safety behavior, and logistics safety performance, as well as the moderated mediating effects of logistics safety behavior through safety culture in Korea. Design/methodology - Research models and hypotheses were established based on prior research related to the 4th industrial revolution logistics technology, logistics safety, and logistics performance. The survey was conducted on the employees of logistics companies, and reliability analysis, confirmatory factor analysis, discriminant validity analysis, structural equation model analysis, and mediating effect analysis were performed. In addition, the moderated mediating effect analysis applying SPSS Process Model No. 7 was conducted. Findings - Usefulness and sociality of the acceptance of the 4th industrial revolution logistics technology had a significant effect on logistics safety behavior. Ease of use, sociality, and efficiency had meaningful effect on logistics safety performance. And in the relationships between the acceptance of logistics technology and logistics safety performance, logistics safety behavior had a significant mediating effect. But the moderated mediating effect of safety behavior through safety culture was not significant. Logistics companies can improve logistics safety performance through the utilization of new logistics technologies such as intelligent logistics robots, autonomous driving technology, and artificial intelligence, etc. Originality/value - This is the first study to analyze the relationships between the acceptance of logistics technology in the 4th industrial revolution and logistics safety. In addition, previous studies analyzed mediating effects or moderating effects, but this is the first study to identify the moderated mediating effects of safety behavior through safety culture. In other words, it has originality in terms of research methodology.

Edge to Edge Model and Delay Performance Evaluation for Autonomous Driving (자율 주행을 위한 Edge to Edge 모델 및 지연 성능 평가)

  • Cho, Moon Ki;Bae, Kyoung Yul
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.191-207
    • /
    • 2021
  • Up to this day, mobile communications have evolved rapidly over the decades, mainly focusing on speed-up to meet the growing data demands of 2G to 5G. And with the start of the 5G era, efforts are being made to provide such various services to customers, as IoT, V2X, robots, artificial intelligence, augmented virtual reality, and smart cities, which are expected to change the environment of our lives and industries as a whole. In a bid to provide those services, on top of high speed data, reduced latency and reliability are critical for real-time services. Thus, 5G has paved the way for service delivery through maximum speed of 20Gbps, a delay of 1ms, and a connecting device of 106/㎢ In particular, in intelligent traffic control systems and services using various vehicle-based Vehicle to X (V2X), such as traffic control, in addition to high-speed data speed, reduction of delay and reliability for real-time services are very important. 5G communication uses high frequencies of 3.5Ghz and 28Ghz. These high-frequency waves can go with high-speed thanks to their straightness while their short wavelength and small diffraction angle limit their reach to distance and prevent them from penetrating walls, causing restrictions on their use indoors. Therefore, under existing networks it's difficult to overcome these constraints. The underlying centralized SDN also has a limited capability in offering delay-sensitive services because communication with many nodes creates overload in its processing. Basically, SDN, which means a structure that separates signals from the control plane from packets in the data plane, requires control of the delay-related tree structure available in the event of an emergency during autonomous driving. In these scenarios, the network architecture that handles in-vehicle information is a major variable of delay. Since SDNs in general centralized structures are difficult to meet the desired delay level, studies on the optimal size of SDNs for information processing should be conducted. Thus, SDNs need to be separated on a certain scale and construct a new type of network, which can efficiently respond to dynamically changing traffic and provide high-quality, flexible services. Moreover, the structure of these networks is closely related to ultra-low latency, high confidence, and hyper-connectivity and should be based on a new form of split SDN rather than an existing centralized SDN structure, even in the case of the worst condition. And in these SDN structural networks, where automobiles pass through small 5G cells very quickly, the information change cycle, round trip delay (RTD), and the data processing time of SDN are highly correlated with the delay. Of these, RDT is not a significant factor because it has sufficient speed and less than 1 ms of delay, but the information change cycle and data processing time of SDN are factors that greatly affect the delay. Especially, in an emergency of self-driving environment linked to an ITS(Intelligent Traffic System) that requires low latency and high reliability, information should be transmitted and processed very quickly. That is a case in point where delay plays a very sensitive role. In this paper, we study the SDN architecture in emergencies during autonomous driving and conduct analysis through simulation of the correlation with the cell layer in which the vehicle should request relevant information according to the information flow. For simulation: As the Data Rate of 5G is high enough, we can assume the information for neighbor vehicle support to the car without errors. Furthermore, we assumed 5G small cells within 50 ~ 250 m in cell radius, and the maximum speed of the vehicle was considered as a 30km ~ 200 km/hour in order to examine the network architecture to minimize the delay.

Model-based Specification of Non-functional Requirements in the Environment of Real-time Collaboration Among Multiple Cyber Physical Systems (사이버 물리 시스템의 실시간 협업 환경에서 소프트웨어 비기능 요구사항의 모델 기반 명세)

  • Nam, Seungwoo;Hong, Jang-Eui
    • Journal of KIISE
    • /
    • v.45 no.1
    • /
    • pp.36-44
    • /
    • 2018
  • Due to the advent of the 4th Industrial Revolution, it is imperative that we aggressively continue to develop state-of-the-art, cutting edge ICT technology relative to autonomous vehicles, intelligent robots, and so forth. Especially, systems based on convergence IT are being developed in the form of CPSs (Cyber Physical Systems) that interwork with sensors and actuators. Since conventional CPS specification only expresses behavior of one system, specification for collaboration and diversity of CPS systems with characteristics of hyper-connectivity and hyper-convergence in the 4th Industrial Revolution has been insufficiently presented. Additionally, behavioral modeling of CPSs that considers more collaborative characteristics has been unachieved in real-time application domains. This study defines the non-functional requirements that should be identified in developing embedded software for real-time constrained collaborating CPSs. These requirements are derived from ISO 25010 standard and formally specified based on state-based timed process. Defined non-functional requirements may be reused to develop the requirements for new embedded software for CPS, that may lead to quality improvement of CPS.

A Study on the Characteristics and Policy Demand of the Unmanned Vehicle Industry in Gyeonggi-do (경기도 무인이동체 산업 특성과 정책수요)

  • Kim, Myung Jin
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.283-299
    • /
    • 2021
  • As the intelligent revolution triggered by digital technology, unmanned vehicles such as self-driving cars, robots, and drones appeared, which brought about innovative changes in the industry. Gyeonggi Local government has established both an ordinance and a basic plan regarding unmanned vehicles. It is time to prepare a data-based policy by understanding the current state of the unmanned vehicle industry in the province. As a result of the survey, the unmanned vehicle industry in Gyeonggi Province is 25% of the nationwide, and more than 88% is concentrated in the southern part of Gyeonggi Province. The land sector such as the robot and autonomous vehicles are focused on 71.4% and the aviation sector such as drones are 26.7%. However, unmanned vehicle companies in Gyeonggi-do are mostly small-sized businesses with less than 10 years of experience and are in the stage of introduction and growth level. They have a plan to improve technology through continuous R&D by hiring human resources. Therefore, Gyeonggi-do needs to consider policy support for sustainable growth of start-up and small enterprises and for fostering professional manpower and technical skills as well as for establishing an unmanned vehicle industry network to create, share, and spread knowledge.

Proposal for Research Model of High-Function Patrol Robot using Integrated Sensor System (통합 센서 시스템을 이용한 고기능 순찰 로봇의 연구모델 제안)

  • Byeong-Cheon Yoo;Seung-Jung Shin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.3
    • /
    • pp.77-85
    • /
    • 2024
  • In this dissertation, a we designed and implemented a patrol robot that integrates a thermal imaging camera, speed dome camera, PTZ camera, radar, lidar sensor, and smartphone. This robot has the ability to monitor and respond efficiently even in complex environments, and is especially designed to demonstrate high performance even at night or in low visibility conditions. An orbital movement system was selected for the robot's mobility, and a smartphone-based control system was developed for real-time data processing and decision-making. The combination of various sensors allows the robot to comprehensively perceive the environment and quickly detect hazards. Thermal imaging cameras are used for night surveillance, speed domes and PTZ cameras are used for wide-area monitoring, and radar and LIDAR are used for obstacle detection and avoidance. The smartphone-based control system provides a user-friendly interface. The proposed robot system can be used in various fields such as security, surveillance, and disaster response. Future research should include improving the robot's autonomous patrol algorithm, developing a multi-robot collaboration system, and long-term testing in a real environment. This study is expected to contribute to the development of the field of intelligent surveillance robots.

Development of the Regulatory Impact Analysis Framework for the Convergence Industry: Case Study on Regulatory Issues by Emerging Industry (융합산업 규제영향분석 프레임워크 개발: 신산업 분야별 규제이슈 사례 연구)

  • Song, Hye-Lim;Seo, Bong-Goon;Cho, Sung-Min
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.199-230
    • /
    • 2021
  • Innovative new products and services are being launched through the convergence between heterogeneous industries, and social interest and investment in convergence industries such as AI, big data-based future cars, and robots are continuously increasing. However, in the process of commercialization of convergence new products and services, there are many cases where they do not conform to the existing regulatory and legal system, which causes many difficulties in companies launching their products and services into the market. In response to these industrial changes, the current government is promoting the improvement of existing regulatory mechanisms applied to the relevant industry along with the expansion of investment in new industries. This study, in these convergence industry trends, aimed to analysis the existing regulatory system that is an obstacle to market entry of innovative new products and services in order to preemptively predict regulatory issues that will arise in emerging industries. In addition, it was intended to establish a regulatory impact analysis system to evaluate adequacy and prepare improvement measures. The flow of this study is divided into three parts. In the first part, previous studies on regulatory impact analysis and evaluation systems are investigated. This was used as basic data for the development direction of the regulatory impact framework, indicators and items. In the second regulatory impact analysis framework development part, indicators and items are developed based on the previously investigated data, and these are applied to each stage of the framework. In the last part, a case study was presented to solve the regulatory issues faced by actual companies by applying the developed regulatory impact analysis framework. The case study included the autonomous/electric vehicle industry and the Internet of Things (IoT) industry, because it is one of the emerging industries that the Korean government is most interested in recently, and is judged to be most relevant to the realization of an intelligent information society. Specifically, the regulatory impact analysis framework proposed in this study consists of a total of five steps. The first step is to identify the industrial size of the target products and services, related policies, and regulatory issues. In the second stage, regulatory issues are discovered through review of regulatory improvement items for each stage of commercialization (planning, production, commercialization). In the next step, factors related to regulatory compliance costs are derived and costs incurred for existing regulatory compliance are calculated. In the fourth stage, an alternative is prepared by gathering opinions of the relevant industry and experts in the field, and the necessity, validity, and adequacy of the alternative are reviewed. Finally, in the final stage, the adopted alternatives are formulated so that they can be applied to the legislation, and the alternatives are reviewed by legal experts. The implications of this study are summarized as follows. From a theoretical point of view, it is meaningful in that it clearly presents a series of procedures for regulatory impact analysis as a framework. Although previous studies mainly discussed the importance and necessity of regulatory impact analysis, this study presented a systematic framework in consideration of the various factors required for regulatory impact analysis suggested by prior studies. From a practical point of view, this study has significance in that it was applied to actual regulatory issues based on the regulatory impact analysis framework proposed above. The results of this study show that proposals related to regulatory issues were submitted to government departments and finally the current law was revised, suggesting that the framework proposed in this study can be an effective way to resolve regulatory issues. It is expected that the regulatory impact analysis framework proposed in this study will be a meaningful guideline for technology policy researchers and policy makers in the future.