• Title/Summary/Keyword: Intelligence Optimization

Search Result 384, Processing Time 0.033 seconds

On Power Calculation for First and Second Strong Channel Users in M-user NOMA System

  • Chung, Kyuhyuk
    • International journal of advanced smart convergence
    • /
    • v.9 no.3
    • /
    • pp.49-58
    • /
    • 2020
  • Non-orthogonal multiple access (NOMA) has been recognized as a significant technology in the fifth generation (5G) and beyond mobile communication, which encompasses the advanced smart convergence of the artificial intelligence (AI) and the internet of things (IoT). In NOMA, since the channel resources are shared by many users, it is essential to establish the user fairness. Such fairness is achieved by the power allocation among the users, and in turn, the less power is allocated to the stronger channel users. Especially, the first and second strong channel users have to share the extremely small amount of power. In this paper, we consider the power optimization for the two users with the small power. First, the closed-form expression for the power allocation is derived and then the results are validated by the numerical results. Furthermore, with the derived analytical expression, for the various channel environments, the optimal power allocation is investigated and the impact of the channel gain difference on the power allocation is analyzed.

The Design Methodology of Fuzzy Controller by Means of Evolutionary Computing and Fuzzy-Set based Neural Networks

  • Roh, Seok-Beom;Oh, Sung-Kwun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.438-441
    • /
    • 2004
  • In this study, we introduce a noble neurogenetic approach to the design of fuzzy controller. The design procedure dwells on the use of Computational Intelligence (CI), namely genetic algorithms and Fuzzy-Set based Neural Networks (FSNN). The crux of the design methodology is based on the selection and determination of optimal values of the scaling factors of the fuzzy controllers, which are essential to the entire optimization process. First, the tuning of the scaling factors of the fuzzy controller is carried out by using GAs, and then the development of a nonlinear mapping for the scaling factors is realized by using GA based FSNN. The developed approach is applied to a nonlinear system such as an inverted pendulum where we show the results of comprehensive numerical studies and carry out a detailed comparative analysis.

  • PDF

Application of A* Algorithm to solve a Cutting Problem in Metal Manufacturing Process (A* 알고리즘을 적용한 금속 그레이팅 생산 공정에서의 절단문제 해결)

  • Kim, Jin-Myoung;Cho, Tae-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.14 no.4
    • /
    • pp.1-8
    • /
    • 2005
  • In a metal grating manufacturing process, the cutting operation allocates the gratings and cut them out from given panels or a plate sheets. Before the cutting operation an operator generates a cutting plan. The cutting plan should decide how pieces of metal rectangles i.e., gratings, are allocated and cut from the panel. This plan generation is a deal of weight on the production cost. the generation of cutting plan is similar to the general two-dimensional cutting problem. In this paper, we first define cutting problem and Af algorithm of Artificial Intelligence to solve the problem. Also, through a simulation, we compare the proposed cutting algorithm to an existing method in terms of material loss

  • PDF

Distance Relay Algorithm and Hardware Test for Protection of Underground Power Cable Systems (지중송전계통 보호용 거리계전 알고리즘 테스트 및 하드웨어 구축)

  • Jung, Chae-Kyun;Lee, Jong-Beom;Lee, Jae-Kyu;Oh, Sung-Kwun;Lee, Won-Kyo;Lee, Dong-Il;Hwang, Kap-Choell
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.428-429
    • /
    • 2008
  • In a previous paper, the distance relay algorithm for protecting of the underground power cable system was introduced. It effectively advance the errors using ACI(Advanced Computing Intelligence) technique. In this algorithm, the optimization was performed by fuzzy inference system and genetic algorithm. In this paper, hardware system based on ACI technique is introduced and tested by hardware test.

  • PDF

Practical Swarm Optimization based Fault-Tolerance Algorithm for the Internet of Things

  • Luo, Shiliang;Cheng, Lianglun;Ren, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1178-1191
    • /
    • 2014
  • The fault-tolerance routing problem is one of the most important issues in the application of the Internet of Things, and has been attracting growing research interests. In order to maintain the communication paths from source sensors to the macronodes, we present a hybrid routing scheme and model, in which alternate paths are created once the previous routing is broken. Then, we propose an improved efficient and intelligent fault-tolerance algorithm (IEIFTA) to provide the fast routing recovery and reconstruct the network topology for path failure in the Internet of Things. In the IEIFTA, mutation direction of the particle is determined by multi-swarm evolution equation, and its diversity is improved by the immune mechanism, which can improve the ability of global search and improve the converging rate of the algorithm. The simulation results indicate that the IEIFTA-based fault-tolerance algorithm outperforms the EARQ algorithm and the SPSOA algorithm due to its ability of fast routing recovery mechanism and prolonging the lifetime of the Internet of Things.

The Optimal Model of Fuzzy-Neural Network Structure using Genetic Algorithm and Its Application to Nonlinear Process System (유전자 알고리즘을 사용한 퍼지-뉴럴네트워크 구조의 최적모델과 비선형공정시스템으로의 응용)

  • 최재호;오성권;안태천;황형수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.302-305
    • /
    • 1996
  • In this paper, an optimal identification method using fuzzy-neural networks is proposed for modeling of nonlinear complex systems. The proposed fuzzy-neural modeling implements system structure and parameter identification using the intelligent schemes together with optimization theory, linguistic fuzzy implication rules, and neural networks(NNs) from input and output data of processes. Inference type for this fuzzy-neural modeling is presented as simplified inference. To obtain optimal model, the learning rates and momentum coefficients of fuzz-neural networks(FNNs) and parameters of membership function are tuned using genetic algorithm(GAs). For the purpose of its application to nonlinear processes, data for route choice of traffic problems and those for activated sludge process of sewage treatment system are used for the purpose of evaluating the performance of the proposed fuzzy-neural network modeling. The show that the proposed method can produce the intelligence model w th higher accuracy than other works achieved previously.

  • PDF

DSS Architectures to Support Data Mining Activities for Supply Chain Management (데이터 마이닝을 활용한 공급사슬관리 의사결정지원시스템의 구조에 관한 연구)

  • Jhee, Won-Chul;Suh, Min-Soo
    • Asia pacific journal of information systems
    • /
    • v.8 no.3
    • /
    • pp.51-73
    • /
    • 1998
  • This paper is to evaluate the application potentials of data mining in the areas of Supply Chain Management (SCM) and to suggest the architectures of Decision Support Systems (DSS) that support data mining activities. We first briefly introduce data mining and review the recent literatures on SCM and then evaluate data mining applications to SCM in three aspects: marketing, operations management and information systems. By analyzing the cases about pricing models in distribution channels, demand forecasting and quality control, it is shown that artificial intelligence techniques such as artificial neural networks, case-based reasoning and expert systems, combined with traditional analysis models, effectively mine the useful knowledge from the large volume of SCM data. Agent-based information system is addressed as an important architecture that enables the pursuit of global optimization of SCM through communication and information sharing among supply chain constituents without loss of their characteristics and independence. We expect that the suggested architectures of intelligent DSS provide the basis in developing information systems for SCM to improve the quality of organizational decisions.

  • PDF

Case-based Optimization Modeling (사례 기반의 최적화 모형 생성)

  • 장용식;이재규
    • Journal of Intelligence and Information Systems
    • /
    • v.8 no.2
    • /
    • pp.51-69
    • /
    • 2002
  • In the supply chain environment on the web, collaborative problem solving and case-based modeling has been getting more important, because it is difficult to cope with diverse problem requirements and inefficient to manage many models as well. Hence, the approach on case-based modeling is required. This paper provides a framework that generates a goal model based on multiple cases, modeling knowledge, and forward chaining and it also develops a search algorithm through sensitivity analysis to reduce the modeling effort.

  • PDF

A Study on Multi-Period Inventory Clearance Pricing in Consideration of Consumer's Reference Price Effect

  • Koide, Takeshi;Sandoh, Hiroaki
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.2
    • /
    • pp.95-102
    • /
    • 2013
  • It is difficult to determine an appropriate discount price for daily perishable products to increase profit from a long-term standpoint. Even if the discount pricing is efficient to increase profit of the day, consumers memorize the sales price and they might hesitate to purchase the product at a regular price the following day. The authors discussed the inventory clearance pricing for a single period in our previous study by constructing a mathematical model to derive an optimal sales price to maximize the expected profit by considering the reference price effect of demand. This paper extends the discussion to handle the discount pricing for multiple periods. A mathematical analysis is first conducted to reveal the properties on an objective function, which is the present value of total expected profits for multiple periods. An algorithm is then proposed to derive an optimal price for asymmetric consumers. Numerical experiments investigate the characteristics of the objective function and optimal pricings.

Study on the Design of Optimal Grinding Control System Using LabView (LabView를 이용한 최적 연삭 제어시스템 설계에 관한 연구)

  • Choi, Jeongju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.7-12
    • /
    • 2013
  • This paper proposed the optimal algorithm of grinding system and the method to realize it. The optimal function was proposed in order to design the optimal grinding process. DE(Differential Evolution) algorithm was used to obtain the selective optimal function. The realization of algorithm was implemented by LabView software used widely at industrial field and the proposed algorithm was verified for through computer simulation. The result of the proposed algorithm can be used for the guide line of the grinding process.