DOI QR코드

DOI QR Code

Study on the Design of Optimal Grinding Control System Using LabView

LabView를 이용한 최적 연삭 제어시스템 설계에 관한 연구

  • Choi, Jeongju (Technical Center for High Performance Valves, Dong-a University)
  • 최정주 (동아대학교 고기능성밸브기술지원센터)
  • Received : 2012.10.12
  • Accepted : 2013.01.10
  • Published : 2013.01.31

Abstract

This paper proposed the optimal algorithm of grinding system and the method to realize it. The optimal function was proposed in order to design the optimal grinding process. DE(Differential Evolution) algorithm was used to obtain the selective optimal function. The realization of algorithm was implemented by LabView software used widely at industrial field and the proposed algorithm was verified for through computer simulation. The result of the proposed algorithm can be used for the guide line of the grinding process.

본 논문은 연삭 공정의 최적화 알고리즘과 이를 구현하기 위한 방안을 제안하였다. 최적의 연삭 공정 설계를 위해서 최적화 함수를 제안하고 선정된 최적 함수의 해를 구하기 위해 DE(Differential Evolution)알고리즘을 이용하였다. 알고리즘의 구현은 산업현장에서 널리 사용되고 있는 LabView소프트웨어를 통해 구현하였고 컴퓨터 시뮬레이션을 통해 제안된 알고리즘을 검증하였다. 본 논문에서 획득한 최적화 기법은 연삭공정의 가이드라인으로 활용 될 수 있을 것으로 사료된다.

Keywords

References

  1. T. J. Choi, N. Subrahmanya, and Y. C. Shin, "Generalized practical models of cylincrical plunge grinding proceses," Machine Tools and Manufacture, Vol. 48, pp. 61-72, 2008. DOI: http://dx.doi.org/10.1016/j.ijmachtools.2007.07.010
  2. S. Malkin, Grinding Technology: Theory and applications of Machining with Abrasive, Ellis Horwood Ltd., Chichester, UK, 1989.
  3. L. Li and J. Fu, "A study of grinding force mathematical model," Annals of the CIRP, Vol. 29, No. 1, pp. 245-249, 1980. DOI: http://dx.doi.org/10.1016/S0007-8506(07)61330-4
  4. J. Choi, C. W. Lee and J. H. Park, "Developement of the Process Model for Plunge Grinding and Optimization of Grinding Process," Journal of Mechanical Engineering Science, Vol. 225, pp. 2628-2637, 2011. DOI: http://dx.doi.org/10.1177/0954406211406201
  5. J. Choi, and J. H. Park,"Development of Roughness Estimation Model for Plunge Grinding of Valve Parts Using Neural Network," Journal of the Korea Academia-Industrial cooperation Society, Vol. 12, No. 1, pp. 62-67, 2011. DOI: http://dx.doi.org/10.5762/KAIS.2011.12.1.062
  6. R. Saravanan, P. Asokan, and M. Sachidanandam, "Genetic Algorithm Approach for Optimization of Surface Grinding Operations," International Jouranl fo Machine Tool and Manufacture, Vol. 42, pp. 1327-1334, 2002. https://doi.org/10.1016/S0890-6955(02)00074-3
  7. Jeongju Choi, Tae-won Choi,, "Study on the Optimal Control of the Plunge Grinding for Valve Parts in Batch Production," Journal of the Korea Academia-Industrial cooperation Society, Vol. 12, No. 11, pp. 4726-4731, 2011. DOI: http://dx.doi.org/10.5762/KAIS.2011.12.11.4726
  8. X. M. Wen, A. A. O. Tay, and A. Y. C. Nee, "Micro-computer-based Optimization fo the Surface Grinding Process," Journal of Materials Processing Technology, Vol. 29, pp. 75-90, 1992. DOI: http://dx.doi.org/10.1016/0924-0136(92)90426-S
  9. B. V. Babu, and M. M. L. Jehan, "Differential Evolution for Multi-objective Optimization," In Proceedings of the IEEE Congress on Evolutionary Computation, Canberra, Australia, Vol. 4, pp. 2696-2703, 2003.
  10. A. G. Krishna, "Optimization of surface grinding operations using a differential evolution approach," Journal of Materials Processing Technology, Vol. 183, pp. 202-209, 2007. DOI: http://dx.doi.org/10.1016/j.jmatprotec.2006.10.010