• Title/Summary/Keyword: Integro-differential operators

Search Result 6, Processing Time 0.02 seconds

Symbolic Algorithm for a System of Differential-Algebraic Equations

  • Thota, Srinivasarao;Kumar, Shiv Datt
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.4
    • /
    • pp.1141-1160
    • /
    • 2016
  • In this paper, a symbolic algorithm for solving a regular initial value problem (IVP) for a system of linear differential-algebraic equations (DAEs) with constant coeffcients has been presented. Algebra of integro-differential operators is employed to express the given system of DAEs. We compute a canonical form of the given system which produces another simple equivalent system. Algorithm includes computing the matrix Green's operator and the vector Green's function of a given IVP. Implementation of the proposed algorithm in Maple is also presented with sample computations.

EXISTENCE AND CONTROLLABILITY OF FRACTIONAL NEUTRAL INTEGRO-DIFFERENTIAL SYSTEMS WITH STATE-DEPENDENT DELAY IN BANACH SPACES

  • KAILASAVALLI, SUBRAMANIAN;SUGANYA, SELVARAJ;ARJUNAN, MANI MALLIKA
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.1
    • /
    • pp.51-82
    • /
    • 2016
  • In view of ideas for semigroups, fractional calculus, resolvent operator and Banach contraction principle, this manuscript is generally included with existence and controllability (EaC) results for fractional neutral integro-differential systems (FNIDS) with state-dependent delay (SDD) in Banach spaces. Finally, an examples are also provided to illustrate the theoretical results.

EXISTENCE AND CONTROLLABILITY OF IMPULSIVE FRACTIONAL NEUTRAL INTEGRO-DIFFERENTIAL EQUATION WITH STATE DEPENDENT INFINITE DELAY VIA SECTORIAL OPERATOR

  • MALAR, K.;ILAVARASI, R.;CHALISHAJAR, D.N.
    • Journal of Applied and Pure Mathematics
    • /
    • v.4 no.3_4
    • /
    • pp.151-184
    • /
    • 2022
  • In the article, we handle with the existence and controllability results for fractional impulsive neutral functional integro-differential equation in Banach spaces. We have used advanced phase space definition for infinite delay. State dependent infinite delay is the main motivation using advanced version of phase space. The results are acquired using Schaefer's fixed point theorem. Examples are given to illustrate the theory.

INFINITELY MANY SMALL ENERGY SOLUTIONS FOR EQUATIONS INVOLVING THE FRACTIONAL LAPLACIAN IN ℝN

  • Kim, Yun-Ho
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1269-1283
    • /
    • 2018
  • We are concerned with elliptic equations in ${\mathbb{R}}^N$, driven by a non-local integro-differential operator, which involves the fractional Laplacian. The main aim of this paper is to prove the existence of small solutions for our problem with negative energy in the sense that the sequence of solutions converges to 0 in the $L^{\infty}$-norm by employing the regularity type result on the $L^{\infty}$-boundedness of solutions and the modified functional method.

SOME DESCRIPTION OF ESSENTIAL STRUCTURED APPROXIMATE AND DEFECT PSEUDOSPECTRUM

  • Ammar, Aymen;Jeribi, Aref;Mahfoudhi, Kamel
    • Korean Journal of Mathematics
    • /
    • v.28 no.4
    • /
    • pp.673-697
    • /
    • 2020
  • In this paper, we introduce and study the structured essential approximate and defect pseudospectrum of closed, densely defined linear operators in a Banach space. Beside that, we discuss some results of stability and some properties of these essential pseudospectra. Finally, we will apply the results described above to investigate the essential approximate and defect pseudospectra of the following integro-differential transport operator.

ON DISCONTINUOUS ELLIPTIC PROBLEMS INVOLVING THE FRACTIONAL p-LAPLACIAN IN ℝN

  • Kim, In Hyoun;Kim, Yun-Ho;Park, Kisoeb
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1869-1889
    • /
    • 2018
  • We are concerned with the following fractional p-Laplacian inclusion: $$(-{\Delta})^s_pu+V(x){\mid}u{\mid}^{p-2}u{\in}{\lambda}[{\underline{f}}(x,u(x)),\;{\bar{f}}(s,u(x))]$$ in ${\mathbb{R}}^N$, where $(-{\Delta})^s_p$ is the fractional p-Laplacian operator, 0 < s < 1 < p < $+{\infty}$, sp < N, and $f:{\mathbb{R}}^N{\times}{\mathbb{R}}{\rightarrow}{\mathbb{R}}$ is measurable with respect to each variable separately. We show that our problem with the discontinuous nonlinearity f admits at least one or two nontrivial weak solutions. In order to do this, the main tool is the Berkovits-Tienari degree theory for weakly upper semicontinuous set-valued operators. In addition, our main assertions continue to hold when $(-{\Delta})^s_pu$ is replaced by any non-local integro-differential operator.