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Abstract. In this paper, a symbolic algorithm for solving a regular initial value problem

(IVP) for a system of linear differential-algebraic equations (DAEs) with constant coeffi-

cients has been presented. Algebra of integro-differential operators is employed to express

the given system of DAEs. We compute a canonical form of the given system which pro-

duces another simple equivalent system. Algorithm includes computing the matrix Green’s

operator and the vector Green’s function of a given IVP. Implementation of the proposed

algorithm in Maple is also presented with sample computations.

1. Introduction

Symbolic computation is playing the central role to solve the mathematical
equations, especially the boundary value problems for differential equations. It is
an important tool in scientific field, which is a part of computer algebra. In twenty-
th century, the science and technology had a very swift progress in various fields,
especially in computing, the subfield of scientific and technological computing. Al-
though, the symbolic computation is a part of scientific computing, but generally
it is considered as different field because scientific computing is usually based on
numerical computation, and most of the numerical calculations are carried out
with approximate floating point algorithm, whereas symbolic computing is a math-
ematical computation in which it emphasizes on the exact solution with symbols
representing the mathematical objects. One of the big success in the research of
symbolic computation is the development of significant software systems.

The proposed symbolic method is established on algebraic structures and it
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has connection with analytic and numeric techniques. As most of the systems of
differential-algebraic equations arising in the applications can only be solved numer-
ically, this connection is absolutely critical. The applications of differential-algebraic
equations arise naturally in many fields and various dynamic processes, for exam-
ple, mechanical systems [15, 21, 23], simulation of electric circuits [7, 8, 20, 22] and
chemical reactions subject to invariants etc. [1, 4, 6, 9, 13, 14, 24] are often expressed
by differential-algebraic equations (DAEs), which consist of algebraic equations and
differential operations. Several methods have been introduced by many researchers
and engineers for solving an initial value problems (IVPs) for systems of DAEs.
Most of them are trying to find an approximate solution of the given system. How-
ever, we present a symbolic method that computes the exact solution of a given
IVP.

Some advantages of the proposed symbolic algorithm over other numerical meth-
ods are: the proposed symbolic method computes the exact solution, it works di-
rectly on the level of operators and simple to understand the solution. In this
method, we solve not only for a particular system but also a generic expression
for different vector forcing functions f(x) to produce the vector Green’s function.
The same idea is also applicable to a regular IVP for system of higher-order linear
differential-algebraic equations to compute the vector Green’s function. A new algo-
rithm is provided for verifying consistency of the inhomogeneous initial conditions.
This algorithm will help to implement the manual calculations in commercial pack-
ages such as Matlab, Mathematica, Singular, SCIlab etc. Maple implementation of
the algorithm is presented in this paper.

1.1. Algebra of integro-differential operators

First we recall some basic concepts of integro-differential algebras and operators,
to represent the system of DAEs with initial conditions in operator-based notations,
see, for example [11, 17, 18] for further details. Throughout this section K denotes
the field of characteristic zero.

Suppose F = C∞[a, b], for simplicity, and [a, b] is an interval of R. Consider a
system of n linear DAEs of the following type,

ADu(x) +Bu(x) = f(x),(1.1)

where D = d
dx ; f(x) = (f1(x), . . . , fn(x))

T ∈ Fn is a vector forcing function and
u(x) = (u1(x), . . . , un(x))

T ∈ Fn is unknown vector to be determine; A,B ∈ Fn×n

are the coefficient matrices. If A ≡ 0, then the system in equation (1.1) is purely
an algebraic system and there are several methods to find all possible solutions. If
A is regular matrix, then the system (1.1) turns out to be a system of ordinary
differential equations as

Du(x) +A−1Bu(x) = A−1f(x).

Consider a system of the form (1.1) with non-zero singular matrix A to find a
solution of a system of DAEs. The matrix differential operator of the system (1.1)
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is given by

(1.2) T = AD+B.

In order to obtain the unique solution, the system (1.1) must have a set of consistent
initial conditions. Suppose

u(a) = 0,(1.3)

is a consistent initial condition at a fixed initial point a ∈ R.

Definition 1.1 An IVP for a system of DAEs is said to be regular if it has a
solution, otherwise it called singular.

For a given regular matrix differential operator T = AD + B and initial con-
ditions, the goal is to find an operator G, so-called matrix Green’s operator, such
that u(x) = Gf(x) satisfies Tu(x) = f(x) with u(a) = 0. We want to find an
explicit formula for the solution corresponding to general linear systems of DAEs
with initial conditions in algebraic settings. The traditional tool for achieving this
is the classical concept of Moore-Penrose generalized inverse [10, 16, 19] and the
variation of parameters [2, 17].

Definition 1.2([17]). The algebraic structure (F, D, A) is called an integro-
differential algebra over K if F is a commutative K-algebra with K-linear operators
D and A such that the following conditions are satisfied

D(Af) = f,(1.4)

D(fg) = (Df)g + f(Dg),(1.5)

(ADf)(ADg) + AD(fg) = (ADf)g + f(ADg),(1.6)

where D : F → F and A : F → F are two maps such that D is a derivation and
A is a K-linear right inverse of D, i.e. DA = 1 (the identity map). The map A is
called an integral for D. An integro-differential algebra over K is called ordinary if
Ker(D) = K.

The operators J = AD, E = 1 − AD, are projectors, known as the initialization
and the evaluation of F respectively. For an ordinary integro-differential algebra,
the evaluation can be translated as a multiplicative linear functional(character)
E : F → K.

Example 1.3([17]). For F = C∞(R) with D = d
dx and A =

∫ x

a
, the operator

Ef(x) = f(a) evaluates f(x) at the initialization point a, and Jf(x) = f(x)− f(a)
applies the initial condition.

The following proposition shows that the matrix ring Fn×n is an integro-
differential algebra if F is an integro-differential algebra.

Proposition 1.4. Let F be an integro-differential algebra over a field K. Then the
matrix ring Fn×n is again an integro-differential algebra over K.
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Proof. Let S =

s11 · · · s1n
...

. . .
...

sn1 · · · snn

 and R =

r11 · · · r1n
...

. . .
...

rn1 · · · rnn

 be from Fn×n. We

apply the action of operators D, A and E component wise. Then, we have

D(AS) =

D(As11) · · · D(As1n)
...

. . .
...

D(Asn1) · · · D(Asnn)

 =

s11 · · · s1n
...

. . .
...

sn1 · · · snn

 = S.

For i, j = 1, . . . , n; we have

D(SR) =

D(s11r11) + · · ·+ D(s1nrn1) · · · D(s11r1n) + · · ·+ D(s1nrnn)
..
.

. . .
..
.

D(sn1r11) + · · ·+ D(snnrn1) · · · D(sn1r1n) + · · ·+ D(snnrnn)



=

D(s11)r11 + · · ·+ D(s1n)rn1 · · · D(s11)r1n + · · ·+ D(s1n)rnn

..

.
. . .

..

.
D(sn1)r11 + · · ·+ D(snn)rn1 · · · D(sn1)r1n + · · ·+ D(snn)rnn



+

s11D(r11) + · · ·+ s1nD(rn1) · · · s11D(r1n) + · · ·+ s1nD(rnn)
.
..

. . .
.
..

sn1D(r11) + · · ·+ snnD(rn1) · · · sn1D(r1n) + · · ·+ snnD(rnn)



=

Ds11 · · · Ds1n
..
.

. . .
..
.

Dsn1 · · · Dsnn


r11 · · · r1n

..

.
. . .

..

.
rn1 · · · rnn

+

s11 · · · s1n
..
.

. . .
..
.

sn1 · · · snn


Dr11 · · · Dr1n

..

.
. . .

..

.
Drn1 · · · Drnn


= (DS)R+ S(DR).

Now,

(ADS)(ADR) + AD(SR)

=

ADs11ADr11 + · · ·+ ADs1nADrn1 · · · ADs11ADr1n + · · ·+ ADs1nADrnn
...

. . .
...

ADsn1ADr11 + · · ·+ ADsnnADrn1 · · · ADsn1ADr1n + · · ·+ ADsnnADrnn


+

AD(s11r11) + · · ·+ AD(s1nrn1) · · · AD(s11r1n) + · · ·+ AD(s1nrnn)
...

. . .
...

AD(sn1r11) + · · ·+ AD(snnrn1) · · · AD(sn1r1n) + · · ·+ AD(snnrnn)


=

 (ADs11)r11 + s11(ADr11) · · · (ADs1n)rn1 + s1n(ADrn1)
...

. . .
...

(ADsn1)r1n + sn1(ADr1n) · · · (ADsnn)rnn + snn(ADrnn)


= (ADS)R+ S(ADR).

Therefore, Fn×n is an integro-differential algebra over K.
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Now we define the algebra of integro-differential operators, which can also be
extended to the vector case as shown in above proposition.

Definition 1.5([17, 18]). Let (F, D, A) be an ordinary integro-differential algebra
over K and Φ ⊆ F∗ (dual of F). The integro-differential operators F[D, A] are
defined as the K-algebra generated by the symbols D and A, the functions f ∈ F

and the characters (functionals) Ec ∈ Φ, modulo the Noetherian and confluent
rewrite system given in Table 1.

Table 1: Rewrite rules for integro-differential operators

fg → f · g Df → fD+ f ′ AfA → (Af)A− A(Af)

χϕ → ϕ Dϕ → 0 AfD → f − Af ′ − E(f)E

ϕf → ϕ(f)ϕ DA → 1 Afϕ → (Af)ϕ

Now, given any IVP for the system of DAEs can be represented in operators as

Tu = f,

Eu = 0,

(1.7)

where T = AD + B ∈ Fn×n[D] is the matrix differential operator, f ∈ Fn is the
vector forcing function and E is the evaluation operator such that Eu = u(a). We
want to find the matrix Green’s operator G ∈ Fn×n[D, A] such that Gf = u and
EG = 0.

2. A New Symbolic Algorithm

We want to find a solution not only for a particular system of the form (1.7)
by fixing f on its right hand side; but also a generic expression for different vector
forcing functions f to produce the corresponding solutions. Therefore, we propose a
symbolic algorithm that transform the given system of DAEs and initial conditions
into operator based notations on suitable spaces.

In the following proposition, we provide an algorithm to test the regularity of
a given IVP for a system of DAEs.

Proposition 2.1([3, 5]). Given a matrix differential operator T = AD + B ∈
Fn×n[D], the system

Tu = f

has a solution if the matrix
δA+B

is regular for all nonzero δ.

For shake of completeness, we provide a sketch of proof as follows.
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Proof. Taking Laplace transformation to the system Tu = f , we get

AδL[u]−Au(0) +BL[u] = L[f ],

where L[·] is the Laplace transform of the argument. We have

L[u](δA+B) = L[f ] +Au(0).

Now L[u] is determined uniquely if δA+B is regular as

L[u] = (δA+B)−1(L[f ] +Au(0)),

and hence the solution

u = L−1
[
(δA+B)−1(L[f ] +Au(0))

]
.

where L−1[·] is the inverse Laplace transform of the argument.

Dai discussed in [3, Chapter 1] that the regularity of a systems of DAEs is
equivalent to the existence of a unique solution.

Example 2.2([5]). Consider a standard system of DAEs, for a body of mass m at
position u1 and velocity u2 with affected force F ,

u′
1 − u2 = 0,

mu′
2 = F.

(2.1)

In matrix notations, we have (AD+B)u = f , where

A =

(
1 0
0 m

)
, B =

(
0 −1
0 0

)
and f =

(
0
F

)
.

The system (2.1) has a solution if δA + B is regular, i.e., mδ2 ̸= 0. Therefore, the
given system is regular if and only if m ̸= 0.

The following Lemma 2.3 is one of the essential steps for our algorithm. This
lemma gives the variation of parameters formula for an IVP for higher-order scalar
linear differential equations over integro-differential algebras.

Lemma 2.3([2, 17]). Let (F, D, A) be an ordinary integro-differential algebra. For
a monic scalar differential operator L = Dm + am−1D

m−1 + · · ·+ a0 ∈ F[D] of order
m with fundamental system v1, . . . , vm, the right inverse operator of L is given by

(2.2) L> =
m∑
i=1

viAw
−1wi ∈ F[D, A],

where w is the determinant of the Wronskian matrix W for v1, . . . , vm and wi the
determinant of the matrix Wi obtained from W by replacing the i-th column by m-th
unit vector.
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In other words, an initial value problem

Lv = g,(2.3)

E v = E D v = · · · = E Dm−1v = 0

has the unique solution

v = L>g =
m∑
i=1

viAw
−1wig.

Before presenting the proposed algorithm, we find a canonical form of the given
DAEs system using the shuffle algorithm [12, 5] that transforms the given system
into another equivalent simpler form which produces the solution of the given sys-
tem.

Consider the system ADu + Bu = f with initial conditions. The augmented
matrix of the given DAEs system is

(2.4)
(
A

... B
... f

)
Using the Gauss elimination technique, we can transform the matrix (2.4) into the
form A1

... B1

... f̂1

0
... B2

... f̂2

 ,

where A1 has full row rank. Now we have the system

(2.5)

(
A1

0

)
Du+

(
B1

B2

)
u =

(
f̂1
f̂2

)
.

By differentiating the second row of the system (2.5), we get

(2.6) ÃDu+ B̃u = f̃ ,

where Ã =

(
A1

B2

)
, B̃ =

(
B1

0

)
and f̃ =

(
f̃1
f̃2

)
=

(
f̂1
Df̂2

)
. If Ã is regular, we are

done, otherwise repeat the procedure until we get a regular Ã.

Remark 2.4. The process of obtaining a regular Ã in shuffle algorithm will termi-
nate after a finite number of iterations, for a regular IVP for DAEs.

The matrix Green’s operator and Green’s function of a given system of DAEs
with initial conditions with the help of the canonical form are computed in the
following theorem.

Thoerem 2.5. Let (F, D, A) be an ordinary integro-differential algebra. Suppose
T̃ = ÃD+ B̃ ∈ Fn×n[D] is a canonical form of T = AD+ B such that T̃ u = f̃ with
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initial conditions; and {v1, . . . , vn} is a fundamental system for L = det(T̃ ). Then
the regular IVP for system of DAEs

Tu = f,

Eu = 0,

has the unique solution

(2.7) u =


∑n

i=1(−1)i+1T1
i L

>f̃i
...∑n

i=1(−1)i+nTn
i L

>f̃i

 ,

where T
j
i is the determinant of T̃ after removing i-th row and j-th column; L> is

the right inverse of L; and f̃ = (f̃1, . . . , f̃n)
T . The matrix Green’s operator is

(2.8) G =

(−1)1+1T1
1L

> · · · (−1)n+1T1
nL

>

...
. . .

...
(−1)1+nTn

1L
> · · · (−1)n+nTn

nL
>


such that Gf̃ = u and E G = 0.

Proof. Since the coefficients matrix Ã of T̃ is regular, from Proposition 2.1, the
system T̃ u = f̃ is regular, hence Tu = f is regular. Using the concept of the gener-
alized Moore-Penrose inverse to the canonical system T̃ , we compute the solution u
by incorporating the initial conditions. Since, the matrix T̃ is a square matrix, the
generalized Moore-Penrose inverse of T̃ is the inverse of T̃ . Suppose L = det(T̃ ).
Then u is computed as

(2.9) u =

(−1)1+1T1
1 · · · (−1)n+1T1

n
...

. . .
...

(−1)1+nTn
1 · · · (−1)n+nTn

n

 1

L
f̃.

Now, the problem of solving system of T̃ u = f̃ with initial conditions is reduced
to an IVP for a scalar higher-order linear differential equation Lyi = f̃i with initial
conditions. Using Lemma 2.3, we compute the solution of scalar equation as yi =
L>f̃i. Therefore, from equation (2.9), the solution is

u =

(−1)1+1T1
1 · · · (−1)n+1T1

n
...

. . .
...

(−1)1+nTn
1 · · · (−1)n+nTn

n


L>f̃1

...

L>f̃n

 .

After simplification, we get

(2.10) u =


∑n

i=1(−1)i+1T1
i L

>f̃i
...∑n

i=1(−1)i+nTn
i L

>f̃i

 .
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Again, from equation (2.9), we have

u =

(−1)1+1T1
1 · · · (−1)n+1T1

n
...

. . .
...

(−1)1+nTn
1 · · · (−1)n+nTn

n

L>

f̃1
...

f̃n



=

(−1)1+1T1
1L

> · · · (−1)n+1T1
nL

>

...
. . .

...
(−1)1+nTn

1L
> · · · (−1)n+nTn

nL
>


f̃1

...

f̃n

 ,

which gives the Green’s operator G such that u = Gf̃ and E G = 0, i.e., E u = 0 as
follows

(2.11) G =

(−1)1+1T1
1L

> · · · (−1)n+1T1
nL

>

...
. . .

...
(−1)1+nTn

1L
> · · · (−1)n+nTn

nL
>


We show that the solution in equation (2.10) and the Green’s operator in equa-

tion (2.11) satisfy the given IVP. Indeed,

Tu = T


∑n

i=1(−1)i+1T1
i L

>f̃i
...∑n

i=1(−1)i+nTn
i L

>f̃i



= T

(−1)1+1T1
1L

> · · · (−1)n+1T1
nL

>

...
. . .

...
(−1)1+nTn

1L
> · · · (−1)n+nTn

nL
>


f̃1

...

f̃n



= T

(−1)1+1T1
1 · · · (−1)n+1T1

n
...

. . .
...

(−1)1+nTn
1 · · · (−1)n+nTn

n


L>f̃1

...

L>f̃n



=

f1
...
fn

 = f,

and

Eu = E


∑n

i=1(−1)i+1T1
i L

>f̃i
...∑n

i=1(−1)i+nTn
i L

>f̃i

 =

E
∑n

i=1(−1)i+1T1
i L

>f̃i
...

E
∑n

i=1(−1)i+nTn
i L

>f̃i



=


∑n

i=1(−1)i+1ET1
i EL

>Ef̃i
...∑n

i=1(−1)i+nETn
i EL

>Ef̃i

 =

0
...
0

 = 0,
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for E is multiplicative and EL> = 0.

Remark 2.6. For better understanding to reader, we explain the Theorem 2.4 for
n = 3. We have

(2.12) T = AD+B ∈ F3×3[D],

where A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 , B =

b11 b12 b13
b21 b22 b23
b31 b32 b33

 ∈ F3×3 and f =

f1
f2
f3

.

Suppose the canonical form of the given differential operator (2.12) is

T̃ = ÃD+ B̃, where Ã =

ã11 ã12 ã13
ã21 ã22 ã23
ã31 ã32 ã33

 , B̃ =

b̃11 b̃12 b̃13
b̃21 b̃22 b̃23
b̃31 b̃32 b̃33

 and f̃ =

f̃1
f̃2
f̃3

.

Let L = det(T̃ ) = â3D
3 + â2D

2 + â1D + â0 ∈ F[D] be a scalar differential operator
with fundamental system {v1, v2, v3}. From Lemma 2.3, we have the right inverse
operator of L as follows

(2.13) L> = v1A(v2v
′
3 − v′2v3)w

−1 + v2A(v3v
′
1 − v′3v1)w

−1 + v3A(v1v
′
2 − v′1v1)w

−1,

where w is the determinant of Wronskian matrix of the fundamental system

{v1, v2, v3}, i.e. w =
v1 v2 v3
v′1 v′2 v′3
v′′1 v′′2 v′′3

.

Now, from Theorem 2.4 the Green’s function is

(2.14) u =

 T1
1L

>f̃1 − T1
2L

>f̃2 + T1
3L

>f̃3
−T2

1L
>f̃1 + T2

2L
>f̃2 − T2

3L
>f̃3

T3
1L

>f̃1 − T3
2L

>f̃2 + T3
3L

>f̃3

 ,

and Green’s operator is

(2.15) G =

 T1
1L

> −T1
2L

> T1
3L

>

−T2
1L

> T2
2L

> −T2
3L

>

T3
1L

> −T3
2L

> T3
3L

>

 ,

where L> is the right inverse of L as in (2.13) and T
j
i is the determinant of T̃ after

removing i-th row and j-th column. Indeed,

T1
1 =

ã22D+ b̃22 ã23D+ b̃23
ã32D+ b̃32 ã33D+ b̃33

; T2
1 =

ã21D+ b̃21 ã23D+ b̃23
ã31D+ b̃31 ã33D+ b̃33

;

T3
1 =

ã21D+ b̃21 ã22D+ b̃22
ã31D+ b̃31 ã32D+ b̃32

; T1
2 =

ã12D+ b̃12 ã13D+ b̃13
ã32D+ b̃32 ã33D+ b̃33

;

T2
2 =

ã11D+ b̃11 ã13D+ b̃13
ã31D+ b̃31 ã33D+ b̃33

; T3
2 =

ã11D+ b̃11 ã12D+ b̃12
ã31D+ b̃31 ã32D+ b̃32

;

T1
3 =

ã12D+ b̃12 ã13D+ b̃13
ã22D+ b̃22 ã32D+ b̃32

; T2
3 =

ã11D+ b̃11 ã13D+ b̃13
ã21D+ b̃21 ã23D+ b̃23

;

T3
3 =

ã11D+ b̃11 ã12D+ b̃12
ã21D+ b̃21 ã22D+ b̃22

.
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Remark 2.7. One can extend the algorithm in Theorem 2.4 to the higher-order
linear DAEs systems, i.e., the IVP

Tu = f,

Γu = 0,

has the unique solution as given in Theorem 2.4, where T = AlD
l + Al−1D

l−1 +
· · ·+ A0 ∈ Fn×n[D] is a matrix differential operator and Γ = {B1, . . . , Bk}, k < nl,
is a set of initial condition operators such that Γu = Biu = EDiu, for i = 1, . . . , k,
here n is the size of coefficient matrices Al ̸= 0, . . . , A0 and l is the highest order of
differential system. The number, k, of initial conditions depend on the number of
differential equations in the given system of DAEs.

2.1. Inhomogeneous initial conditions

In this section, we provide computations for an IVP for the system of DAEs
with inhomogeneous conditions, i.e the solution of

Tu = f,

Eu = α,

(2.1)

where α = (α1, . . . , αn)
T . Before finding the exact solution, we first check the con-

sistency of the initial conditions. The following proposition provides the algorithm
to check the consistency of the given inhomogeneous initial conditions.

Proposition 2.8. Let (F, D, A) be an ordinary integro-differential algebra. Suppose
T̃ = ÃD+ B̃ ∈ Fn×n[D] is a canonical form of a regular matrix differential operator
T = AD + B such that T̃ u = f̃ with inhomogeneous initial conditions. If the
inhomogeneous initial condition Eu = α is consistent, then

(2.2) UU−1
a α ∈ Ker(T ),

where U is the fundamental matrix of T̃ and Ua is value of U at the initial point a.

Proof. Suppose the system Eu = α is consistent, where α = (α1, . . . , αn). Then the
canonical system T̃ u = f̃ with initial conditions Eu = α is regular, for the matrix
differential operator T is regular. The solution of the canonical system can be
decomposed into two cases, namely the solution, say up, of T̃ u = f̃ with conditions

Eu = 0 and the solution, say uc, of T̃ u = 0 with conditions Eu = α. The solution of
the first case is obtained from Theorem 2.4 as

up =


∑n

i=1(−1)i+1T1
i L

>f̃i
...∑n

i=1(−1)i+nTn
i L

>f̃i

 .
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The solution of the second case is depending only on the inhomogeneous initial
data, this amounts to an interpolation problem with initial conditions. Suppose

(2.3) uc = c1v1 + · · ·+ cnvn

is the required solution of the second case, where U = [v1, · · · , vn] is the fundamental
matrix of T̃ and c1, . . . , cn are the coefficients to be determined. From the given
initial conditions with α, one can express the equation (2.3) as

Ua(c1, . . . , cn)
T = (α1, . . . , αn)

T ,

since Ua is regular, we have

(2.4)

c1
...
cn

 = U−1
a

α1

...
αn

 .

Therefore, from equations (2.3)-(2.4), the solution of the second case is

uc = (v1, . . . , vn)

c1
...
cn


= (v1, . . . , vn)U

−1
a

α1

...
αn


= UU−1

a α.

Now, the general solution is u = up + uc and it must satisfy the canonical system
as well as the given system, hence we have

Tu = T (up + uc) = Tup + Tuc = f + T (UU−1
a α),

Eu = E(up + uc) = Eup + Euc = 0 + EUU−1
a α = 0 + α = α.

which gives that T (UU−1
a α) = 0, i.e., UU−1

a α ∈ Ker(T ).

The following theorem provides an algorithm to compute the general solution
of a given IVP for DAEs.

Theorem 2.9. Let (F, D, A) be an ordinary integro-differential algebra. Suppose
T̃ = ÃD + B̃ ∈ Fn×n[D] is a canonical form of T = AD + B such that T̃ u = f̃
with consistent inhomogeneous initial conditions; and {v1, . . . , vn} is a fundamental
system for L = det(T̃ ). Then the regular IVP for the system of DAEs

Tu = f,

Eu = α,
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has the unique solution

(2.5) u = uc + up,

where uc = UU−1
a α and up =


∑n

i=1(−1)i+1T1
i L

>f̃i
...∑n

i=1(−1)i+nTn
i L

>f̃i

.

Proof. We prove by substituting into the system and initial conditions. Now,

Tu = Tuc + Tup = TUU−1
a α+ T


∑n

i=1(−1)i+1T1
i L

>f̃i
...∑n

i=1(−1)i+nTn
i L

>f̃i



= 0 + T

(−1)1+1T1
1L

> · · · (−1)n+1T1
nL

>

...
. . .

...
(−1)1+nTn

1L
> · · · (−1)n+nTn

nL
>


f̃1

...

f̃n



=

f1
...
fn

 = f, (by Theorem 2.4),

for UU−1
a α ∈ Ker(T ), and

Eu = Euc + Eup = EUU−1
a α+ E


∑n

i=1(−1)i+1T1
i L

>f̃i
...∑n

i=1(−1)i+nTn
i L

>f̃i



= EUaU
−1
a α+


∑n

i=1(−1)i+1ET1
i EL

>Ef̃i
...∑n

i=1(−1)i+nETn
i EL

>Ef̃i


= Iα+ 0 = α, (by Theorem 2.4),

where I is the identity matrix of order n.

2.2. Sample computations

The following Examples demonstrate the proposed algorithm to compute the
matrix Green’s operator and the vector Green’s function of a given IVP, and the
exact solution for a fixed vector forcing function f .

Example 2.10. Consider the following differential-algebraic equations.

(2.1)

(
1 −1
0 0

)(
u′
1

u′
2

)
+

(
1 −2
0 1

)(
u1

u2

)
=

(
f1
f2

)
,
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with initial condition

(
u1(0)
u2(0)

)
=

(
0
0

)
.

The canonical form of the system (2.1) is ÃDu+ B̃u = f̃ , where

Ã =

(
1 −1
0 1

)
, B̃ =

(
1 0
0 0

)
and f̃ =

(
f1 + 2f2

Df2

)
,

The matrix differential operator for the given system and the canonical form of
(2.1) respectively, are

T =

(
1 + D − 2− D

0 1

)
, T̃ =

(
1 + D − D

0 D

)
Following the algorithm in Theorem 2.4, we have the matrix Green’s operator of T̃
given by

G =

(
e−xAex e−xAex

0 A

)
,

and the vector Green’s function is given by

(2.2) u = Gf̃ =

e−x
x∫
0

ex(f1(x) + 2f2(x))dx+ e−x
x∫
0

exDf2(x)dx

f2(x)

 .

For simplicity, if f =

(
0

sinx

)
, then the exact solution is obtained from the Green’s

function (2.2) as

(2.3) u =

(
1
2e

−x − 1
2 cosx+ 3

2 sinx
sinx

)
.

One can easily check that Tu = f and Eu = 0.
Consider the inhomogeneous initial conditions u(0) = α with given system (2.1).

From Proposition 2.5, the initial condition is consistent if UU−1
0 α ∈ Ker(T ), where

U =

(
e−x 0
0 1

)
, U0 =

(
1 0
0 1X

)
, and α =

(
α1

α2

)
.

Now

UU−1
0 α =

(
e−x 0
0 1

)(
1 0
0 1

)(
α1

α2

)
=

(
e−xα1

α2

)
and

T (UU−1
0 α) =

(
1 + D −2− D

0 1

)(
e−xα1

α2

)
=

(
−2α2

α2

)
,

which gives α2 = 0 for UU−1
0 α ∈ Ker(T ), and hence the consistent initial condition

is Eu = (α1, 0)
T , α1 ∈ R. The solution uc of the IVP Tu = 0, Eu = (α1, 0)

T

computed as in Theorem 2.6 is

uc = UU−1
0 α =

(
e−xα1

0

)
,
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and the solution up of the IVP Tu = f, Eu = 0 computed as in equation (2.3) is

up =

(
1
2e

−x − 1
2 cosx+ 3

2 sinx
sinx

)
.

The exact solution of the regular system(
1 + D − 2− D

0 1

)(
u1

u2

)
=

(
0

sinx

)
,

E

(
u1

u2

)
=

(
α1

0

)
; α1 ∈ R

is computed from Theorem 2.6 as u = uc + up, i.e.

u =

(
1
2e

−x − 1
2 cosx+ 3

2 sinx+ α1e
−x

sinx

)
.

Example 2.11. Consider an IVP with homogeneous initial conditions at zero

(2.4)

1 −1 2
0 1 −1
0 0 0

u′ +

1 −2 4
0 −1 1
0 0 1

u =

 ex

cosx
sinx

 .

We compute the exact solution of the given system similar to Example 2.7 as
follows: The matrix differential operator of the IVP (2.4) and forcing function f
are

T =

1 + D − 2− D 4 + 2D
0 −1 + D −1− 2D
0 0 1

 and f =

f1
f2
f3

 ,

where f1 = ex, f2 = cosx, f3 = sinx. The canonical form of the given system is

T̃ =

1 + D − 3 D

0 −1 + D −D
0 0 D

 and f̃ =

f̃1
f̃2
f̃3

 =

f1 − 5f3 + f2
f2 − f3
Df3

 .

Suppose L = det(T̃ ) = D3−D. Then the fundamental system of L is {1, ex, e−x} and
the determinant of Wronskian matrix w = 2. From Lemma 2.3 or equation (2.13),
the right inverse of L is

L> =
1

2
e−xAex +

1

2
exAe−x − A.

The Green’s operator of the given system (2.4) obtained as in Theorem 2.4 or
equation (2.15) is

G =

e−xAex 3
2e

−xAex + 3
2e

xAe−x −5
2 e−xAex + 3

2e
xAe−x

0 exAe−x exAe−x

0 0 A

 ,
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and the Green’s function is Gf̃ = u = (u1, u2, u3)
T , where

u1 = e−x

x∫
0

ex(f1 + f2 − 5f3) dx− 3

2
e−x

x∫
0

ex(f2 − f3) dx

+
3

2
ex

x∫
0

e−x(f2 − f3) dx− 5

2
e−x

x∫
0

exDf3 dx+
3

2
ex

x∫
0

e−xDf3 dx

u2 = ex
x∫

0

e−x(f2 − f3) dx+ ex
x∫

0

e−xDf3 dx

u3 = f3.

Now the exact solution of the given IVP (2.4) for f = (ex, cosx, sinx)T is obtained
from the Green’s function

(2.5) u =

 5
4e

x − 3
2e

−x − 1
2 cosx− sinx

1
2e

x − 1
2 cosx+ 3

2 sinx
sinx

 .

Here Tu = f and Eu = 0.

The consistent inhomogeneous initial condition is calculated using the algorithm
presented in Proposition 2.5 as follows.

The fundamental matrix U of T̃ and U0 are given by

U =

 ex e−x 0
2
3e

x 0 0
0 0 1

 and U0 =

1 1 0
2
3 0 0
0 0 1

 .

From Proposition 2.5, we know that an initial condition Eu = α, where α =
(α1, α2, α3)

T , is consistent if UU−1
0 α ∈ Ker(T ). Hence, we have

T (UU−1
0 α) =

1 + D −2− D 4 + 2D
0 −1 + D 1− D

0 0 1

e−xα1 +
3
2 (e

x − e−x)α2

exα2

α3

 =

4α3

α3

α3

 ,

which shows that α3 = 0 for UU−1
0 α ∈ Ker(T ). Therefore, the consistent initial

condition is Eu = (α1, α2, 0)
T , α1, α2 ∈ R. The solution uc of IVP Tu = 0, Eu =

(α1, α2, 0)
T is obtained from Theorem 2.6 as

uc = UU−1
0 α =

e−xα1 +
3
2 (e

x − e−x)α2

exα2

0

 ,
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and the solution up of IVP Tu = f, Eu = 0 is obtained from equation (2.5)

up =

 5
4e

x − 3
2e

−x − 1
2 cosx− sinx

1
2e

x − 1
2 cosx+ 3

2 sinx
sinx

 .

Now, the exact solution of IVP for DAEs1 + D −2− D 4 + 2D
0 −1 + D 1− D

0 0 1

u1

u2

u3

 =

 ex

cosx
sinx

 ,

u1(0)
u2(0)
u3(0)

 =

α1

α2

0

 , α1, α2 ∈ R,

calculated as in Theorem 2.6 is u = uc + up, i.e.

u =

 5
4e

x − 3
2e

−x − 1
2 cosx− sinx+ e−xα1 + (− 3

2e
−x + 3

2e
x)α2

1
2e

x − 1
2 cosx+ 3

2 sinx+ exα2

sinx

 .

Example 2.12. Consider a system of DAEs as given below,

u′
1 + (λ− 2)u1 = f1,

u′
2 + λu2 = f2,

u1 + u2 + λu3 = f3,

with initial conditions at zero.
Matrix differential operator of the given system is

T =

λ− 2 + D 0 1
0 λ+ D 0
1 1 λ


If λ = 0, then the canonical form of the given system is1 0 0

0 1 0
0 1 1

2

 Du+

0 0 0
0 0 0
0 0 0

u =

 Df3 − f2
f2

−1
2D

2f3 +
1
2Df1 + Df3 +

1
2Df2

 .

Exact solution of the given system, if f = (0, ex, sinx)T for simplicity, is

u =

 1 + sinx− ex

ex − 1
2 + 2 sinx− ex − cosx

 .
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If λ = 1, then the canonical form of the given system is1 0 0
0 1 0
1 1 1

 Du+

0 1 2
0 1 0
0 0 0

u =

f1 + f3
f2
Df3

 .

The exact solution of the given system for f = (0, ex, sinx)T is

u =

 1
6e

−x − 1
2e

x + 2
15e

2x + 1
5 cosx+ 2

5 sinx
1
2e

−x
(
e2x − 1

)
1
3e

−x − 2
15e

2x − 1
5 cosx+ 3

5 sinx

 .

It is observed that Tu = f and Eu = 0 in both cases λ = 0, 1.

3. Proposed algorithm in Maple

In this section, we discuss Maple implementation, daeSolve, for the pro-
posed algorithm by creating different data types with the help of the Maple
package IntDiffOp implemented by Anja Korporal et al. [11]. The data type
MatrixDiffOperator(A,B) is created to generate the matrix differential operator
T of a given system, where A and B are the coefficient matrices of a given system.
The function CanonicalMatrixSystem(A,B,f) produces the canonical form of a
given DAEs, where f is a given vector forcing function and ExactSolution(A,B,f)

generates the exact solution of a given system. The maple package daeSolve is
available at http://www.srinivasaraothota.webs.com/research with examples.

In the following example, sample computations using the Maple implementation
of the proposed algorithm is presented.

Example 3.1. Recall Example 2.7, for the sample computations as follows.

> with(IntDiffOp):with(daeSolve): # Loading packages.

> A:=Matrix([[1,-1],[0,0]]): # The coefficient matrix of T = AD+B.

> B:=Matrix([[1,-2],[0,1]]): # The coefficient matrix of T = AD+B.

> f:=Matrix([[0], [sin(x)]]): # The vector forcing function such that
Tu = f .

> T:=MatrixDiffOperator(A,B); # Matrix differential operator T = AD+B.

T :=

[
1 + D − 2− D

0 1

]
> CanonicaMatrixDiffSystem(A,B,f);

# Produces T̃ and f̃ of the canonical form T̃ u = f̃ of the given system.[
1 + D − D

0 D

]
,

[
2 sin(x)
cos(x)

]
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> u := ExactSolution(A,B,f);

# Exact solution of the given IVP Tu = f, Eu = 0.

u :=

[
− 1

2e
−x (−1 + ex cos(x)− 3ex sin(x))

sin(x)

]
> ApplyMatrixOperator(T,u);

# Checking Tu = f . [
0

sin(x)

]
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