• 제목/요약/키워드: Integrity monitoring

검색결과 322건 처리시간 0.028초

전기비저항 모니터링을 이용한 저수지 제체 취수시설 취약성 해석 (Analysis of a Weak Zone in Embankment Close to a Drainage using Resistivity Monitoring Data)

  • 임성근
    • 지구물리와물리탐사
    • /
    • 제21권1호
    • /
    • pp.8-14
    • /
    • 2018
  • 저수지 제체에 대한 자연재해 피해를 예방하고 보수 및 보강대책을 수립하기 위해서 각종 계측기와 재해예방 전기비저항 모니터링 시스템을 설치하여 관리하고 있다. 대부분 30년 이상으로 노후화된 저수지는 농업용 관개에 따른 구조적인 취약성을 가지고 있다. 계측 및 모니터링 목적은 저수지의 안전성과 견고성을 확보하는데 있는데, 전기비저항탐사는 결함 부위, 침투수 이상대 및 제체 내 세굴현상 등과 같은 잠재적인 취약성 파악이 가능하다. 국내 한 저수지 제체 댐마루에 설치된 전기비저항 자동계측시스템을 통하여 매일 6시간 간격으로 저장된 연간 모니터링 자료를 이용하여, 제체 내 침투수 영향을 파악하였다. 연간 저수위 변화는 10m 정도인데, 영농기 취수에 따른 저수위 변화는 제체 내 물성변화를 야기한다. 모니터링 자료 해석 결과, 비저항 값은 연간 저수위 및 계절영향 이외에 대체로 안정적이었다. 또한, 제체 내 취수시설 주변의 취약성 고찰을 위해서 단순화된 모델을 구성하여 모델링을 수행하였다. 그 결과 전기비저항 모델 반응 계산을 통한 복통구조물 주변 침투수 구간의 탐지가 가능함을 확인하였다.

광섬유 센서를 이용한 온도 및 변형 모니터링에 대한 현장응용 사례 (Case Studies on Distributed Temperature and Strain Sensing(DTSS) by using an Optical fiber)

  • 김중열;김유성;이성욱;민경주;박동수;방기성;김강식
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.86-95
    • /
    • 2006
  • Brillouin backscatter is a type of reflection that occurs when light is shone into an optical fibre. Brillouin reflections are very sensitive to changes in the fibre arising from external effects, such as temperature, strain and pressure. We report here several case studies on the measurement of strain using Brillouin reflections. A mechanical bending test of an I beam, deployed with both fiber optic sensors and conventional strain gauge rosettes, was performed with the aim of evaluating: (1) the capability and technical limit of the DTSS technology for strain profile sensing; (2) the reliability of strain measurement using fiber optic sensor. The average values of strains obtained from both DTSS and strain gauges (corresponding to the deflection of I beam) showed a linear relationship and an excellent one-to-one match. A practical application of DTSS technology as an early warning system for land sliding or subsidence was examined through a field test at a hillside. Extremely strong, lightweight, rugged, survivable tight-buffered cables, designed for optimal strain transfer to the fibre, were used and clamped on the subsurface at a depth of about 50cm. It was proved that DTSS measurements could detect the exact position and the progress of strain changes induced by land sliding and subsidence. We also carried out the first ever distributed dynamic strain measurement (10Hz) on the Korean Train eXpress(KTX) railway track in Daejeon, Korea. The aim was to analyse the integrity of a section of track that had recently been repaired. The Sensornet DTSS was used to monitor this 85m section of track while a KTX train passed over. In the repaired section the strain increases to levels of 90 microstrain, whereas in the section of regular track the strain is in the region of 30-50 microstrain. The results were excellent since they demonstrate that the DTSS is able to measure small, dynamic changes in strain in rails during normal operating conditions. The current 10km range of the DTSS creates a potential to monitor the integrity of large lengths of track, and especially higher risk sections such as bridges, repaired track and areas at risk of subsidence.

  • PDF

Electromechanical impedance-based long-term SHM for jacket-type tidal current power plant structure

  • Min, Jiyoung;Yi, Jin-Hak;Yun, Chung-Bang
    • Smart Structures and Systems
    • /
    • 제15권2호
    • /
    • pp.283-297
    • /
    • 2015
  • Jacket-type offshore structures are always exposed to severe environmental conditions such as salt, high speed of current, wave, and wind compared with other onshore structures. In spite of the importance of maintaining the structural integrity for an offshore structure, there are few cases to apply a structural health monitoring (SHM) system in practice. The impedance-based SHM is a kind of local SHM techniques and to date, numerous techniques and algorithms have been proposed for local SHM of real-scale structures. However, it still requires a significant challenge for practical applications to compensate unknown environmental effects and to extract only damage features from impedance signals. In this study, the impedance-based SHM was carried out on a 1/20-scaled model of an Uldolmok current power plant structure in Korea under changes in temperature and transverse loadings. Principal component analysis (PCA)-based approach was applied with a conventional damage index to eliminate environmental changes by removing principal components sensitive to them. Experimental results showed that the proposed approach is an effective tool for long-term SHM under significant environmental changes.

KOMPSAT Data Processing System: Preliminary Acceptance Test Results

  • Kim, Yong-Seung;Kim, Youn-Soo;Lim, Hyo-Suk;Lee, Dong-Han;Kang, Chi-Ho
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1999년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.331-336
    • /
    • 1999
  • The optical sensors of Electro-Optical Camera (EOC) and Ocean Scanning Multi-spectral Imager (OSMI) aboard the Korea Multi-Purpose SATellite (KOMPSAT) will be placed in a sun synchronous orbit in 1999. The EOC and OSMI sensors are expected to produce the land mapping imagery of Korean territory and the ocean color imagery of world oceans, respectively. Utilization of the EOC and OSMI data would encompass the various fields of science and technology such as land mapping, land use and development, flood monitoring, biological oceanography, fishery, and environmental monitoring. Readiness of data support for user community is thus essential to the success of the KOMPSAT program. As part of testing such readiness prior to the KOMPSAT launch, we have performed the preliminary acceptance test for the KOMPSAT data processing system using the simulated EOC and OSMI data sets. The purpose of this paper is to demonstrate the readiness of the KOMPSAT data processing system, and to help data users understand how the KOMPSAT EOC and OSMI data are processed and archived. Test results demonstrate that all requirements described in the data processing specification have been met, and that the image integrity is maintained for all products. It is however noted that since the product accuracy is limited by the simulated sensor data, any quantitative assessment of image products can not be made until actual KOMPSAT images will be acquired.

  • PDF

Performance Comparison of GPS Fault Detection and Isolation via Pseudorange Prediction Model based Test Statistics

  • Yoo, Jang-Sik;Ahn, Jong-Sun;Lee, Young-Jae;Sung, Sang-Kyung
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권5호
    • /
    • pp.797-806
    • /
    • 2012
  • Fault detection and isolation (FDI) algorithms provide fault monitoring methods in GPS measurement to isolate abnormal signals from the GPS satellites or the acquired signal in receiver. In order to monitor the occurred faults, FDI generates test statistics and decides the case that is beyond a designed threshold as a fault. For such problem of fault detection and isolation, this paper presents and evaluates position domain integrity monitoring methods by formulating various pseudorange prediction methods and investigating the resulting test statistics. In particular, precise measurements like carrier phase and Doppler rate are employed under the assumption of fault free carrier signal. The presented position domain algorithm contains the following process; first a common pseudorange prediction formula is defined with the proposed variations in pseudorange differential update. Next, a threshold computation is proposed with the test statistics distribution considering the elevation angle. Then, by examining the test statistics, fault detection and isolation is done for each satellite channel. To verify the performance, simulations using the presented fault detection methods are done for an ideal and real fault case, respectively.

중수로 원자로건물 총누설감시계통 시험 중지에 따른 리스크 영향 평가 (Risk Assessment for Abolition of Gross Containment Leak Monitoring System Test in CANDU Design Plant)

  • 배연경;나장환;방기인
    • 한국안전학회지
    • /
    • 제30권5호
    • /
    • pp.123-130
    • /
    • 2015
  • Wolsong Unit 2,3&4 has been performing a containment integrity test during power operation. This test could impact to the safe operation during test. If an accident occurs during pressure dropping phase, reactor trip can be delayed because of the increased pressure difference which causes a time delay to reach the trip set-point. On the contrary, if an accident occurs during pressure increasing phase, reactor trip could be accelerated because the pressure difference to the trip set-point decrease. Point Lepreau nuclear power plant, which installed GCLMS (Gross Containment Leakage Monitoring System) in 1990, has discontinued the test since 1992 due to these adverse effects. Therefore, we evaluated the risk to obviate the GCLMS test based on PWR's ILRT (Integrated Leak Rate Test) extension methodologies. The results demonstrate that risk increase rate is not high in case of performing only ILRT test at every 5 years instead of doing GCLMS test at every 1.5 years. In addition, the result shows that GCLMS test can be removed on a risk-informed perspective since risk increasement is in acceptable area of regulatory acceptance criteria.

Discovery of and Recovery from Failure in a Costal Marine USN Service

  • Ceong, Hee-Taek;Kim, Hae-Jin;Park, Jeong-Seon
    • Journal of information and communication convergence engineering
    • /
    • 제10권1호
    • /
    • pp.11-20
    • /
    • 2012
  • In a marine ubiquitous sensor network (USN) system using expensive sensors in the harsh ocean environment, it is very important to discover failures and devise recovery techniques to deal with such failures. Therefore, in order to perform failure modeling, this study analyzes the USN-based real-time water quality monitoring service of the Gaduri Aqua Farms at Songdo Island of Yeosu, South Korea and devises methods of discovery and recovery of failure by classifying the types of failure into system element failure, communication failure, and data failure. In particular, to solve problems from the perspective of data, this study defines data integrity and data consistency for use in identifying data failure. This study, by identifying the exact type of failure through analysis of the cause of failure, proposes criteria for performing relevant recovery. In addition, the experiments have been made to suggest the duration as to how long the data should be stored in the gateway when such a data failure occurs.

저항 점용접에서 인공신경회로망을 이용한 용융부 추정에 관한 연구 (Estimation of Nugget Size in Resistance Spot Welding Processes Using Artificial Neural Networks)

  • 최용범;장희석;조형석
    • 대한기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.393-406
    • /
    • 1993
  • In resistance spot welding process, size of molten nuggest have been utilized to assess the integrity of the weld quality. However real-time monitoring of the nugget size is an extremely difficult problem. This paper describes the design of an artificial neural networks(ANN) estimator to predict the nugget size for on-line use of weld quality monitoring. The main task of the ANN estimator is to realize the mapping characteristics from the sampled dynamic resistance signal to the actual negget size through training. The structure of the ANN estimator including the number of hidden layers and nodes in a layer is determined by an estimation error analysis. A series of welding experiments are performed to assess the performance of the ANN estimator. The results are quite promissing in that real-time estimation of the invisible nugget size can be achieved by analyzing the dynamic resistance signal without any conventional destructive testing of welds.

3MW급 풍력터빈을 모사한 풍력터빈 시뮬레이터 제어로직 설계에 관한 연구 (A Study on the Design of Control Logic for Wind Turbine Simulator having Similarity with 3MW Class Wind Turbine)

  • 오기용;이재경;박준영;이준신
    • 전기학회논문지
    • /
    • 제61권6호
    • /
    • pp.810-816
    • /
    • 2012
  • As wind power has increased steadily, the importance of a condition monitoring system is being emphasized to maximize the availability and reliability of a wind turbine. To develop the advanced algorithms for fault detection and lifespan estimation, a wind turbine simulator is essential for verification of the proposed algorithms before applying them to a condition diagnosis & integrity prognosis system. The developed new-type simulator in this paper includes blades and various sensors as well as a motor, a gearbox and a generator of which the existing simulators generally consist. It also has similarity with a 3MW class wind turbine and can be used to acquire operational data from various operation conditions. This paper presents a design method of control logic for the wind turbine simulator, which gives a wind generation method and similar dynamic characteristics with the 3MW wind turbine. Finally, the proposed control logic is verified through experiments.

연안침식방지를 위한 관리체계 개선방안 (A Study on Improvement of Management Framework for Coastal Erosion Protection)

  • 이문숙;박성욱
    • Ocean and Polar Research
    • /
    • 제29권2호
    • /
    • pp.155-165
    • /
    • 2007
  • Recently, coastal erosion has become an important issue in relation to keeping territorial integrity of a nation as well as protecting the coastal marine ecosystem. This study examines some apprehensions about the effectiveness of the existing legal system concerning prevention of coastal erosion. After examining several case studies in Scotland, the USA, and the Netherlands, this study proposes appropriate revisional legal measures that can be applied in Korea: first, the coastal management act should be revised for stronger, enforceable and practical legal grounds emphasizing minimal coastal erosion; second, the proposed "Comprehensive Coastal Erosion Prevention Plan" should be established and implemented in four steps such as characterization of issues through surveys of stakeholders and demand assessment, plan establishment, execution, and maintenance and management; third, there is a demand to establish and implement a legal framework to support monitoring activities which provide important data and information to prevent coastal erosion; fourth, the chronic region of damage is designated as the "Vulnerable Area" to be protected and managed accordingly; fifth, the "Coastal Coordination council" is established and operated for developing an integrated coastal management policy and visions for sustainable coastal zone, as well as coordinating and intervention of any activities which may cause coastal erosion.