• Title/Summary/Keyword: Integrity Monitoring

Search Result 313, Processing Time 0.027 seconds

Direct and Indirect Membrane Integrity Tests for Monitoring Microbial Removal by Microfiltration (정밀여과(MF)막 미생물 제거율 모니터링을 위한 막 완전성시험)

  • Hong, Seungkwan;Miller, Frank;Taylor, James
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.6
    • /
    • pp.801-806
    • /
    • 2004
  • The pilot study was conducted to (i) investigate the ability of various membrane integrity monitoring methods to detect changes in membrane integrity during operation, and (ii) determine the impact of membrane damage on microbial removal by microfiltration. Two variations of air pressure hold tests were investigated for direct integrity monitoring: pressure decay (PD) and diffusive air flow (DAF) tests which are most commonly used integrity tests for microfiltration (MF) membranes. Both PD and DAF tests were sensitive enough to detect one damaged fiber out of 66,000 under field operaing conditions. Indirect integrity monitoring such as turbidity and particle counting, however, responded poorly to defects in membrane systems. Microbial challenge study was performed using both new and deliberately damaged membranes, as well as varying the state of fouling of the membrane. This study demonstrated that MF membrane with nominal pore size $0.2{\mu}m$ was capable of removing various pathogens including coliform, spore, and cryptosporidium, at the level required by drinking water regulations, even when high operating pressures were applied. A sharp decrease in average log reduction value (LRV) was observed when one fiber was damaged, emphasizing the importance of membrane integrity in control of microbial contamination.

Evaluation of Structural Integrity and Performance Using Nondestructive Testing and Monitoring Techniques

  • Rhim, Hong-Chul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.3
    • /
    • pp.73-81
    • /
    • 1998
  • In this paper, the necessity of developing effective nondestructive testing and monitoring techniques for the evaluation of structural integrity and performance is described. The evaluation of structural integrity and performance is especially important when the structures and subject to abrupt external forces such as earthquake. A prompt and extensive inspection is required over a large area of earthquake-damaged zone. This evaluation process is regarded as a part of performance-based design. In the paper, nondestructive testing and monitoring techniques particularly for concrete structures are presented as methods for the evaluation of structural integrity and performance. The concept of performance-based design is first defined in the paper followed by the role of evaluation of structures in the context of overall performance=based design concept. Among possible techniques for the evaluation, nondestructive testing methods for concrete structures using radar and a concept of using fiber sensor for continuous monitoring of structures are presented.

  • PDF

Review of GPS and Galileo Integrity Assurance Procedure (GPS와 Galileo의 무결성 보장 방법 조사)

  • Namkyu Woo;Gihun Nam;Heonho Choi;Jiyun Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.1
    • /
    • pp.53-61
    • /
    • 2024
  • Global Navigation Satellite Systems are expected to meet system-defined integrity requirements when users utilize the system for safety critical applications. While the guaranteed integrity performance of GPS and Galileo is publicly available, their integrity assurance procedure and related methodology have not been released to the public in an official document format. This paper summarizes the integrity assurance procedures of Global Positioning System (GPS) and Galileo, which were utilized during their system development, through a literature survey of their integrity assurance methodology. GPS Block II assures system integrity using the following methods: continuous performance monitoring and maintenance on Space Segment (SS) and Control Segment (CS), through a cause and effect analysis of anomalies and a failure analysis. In GPS Block III, to achieve more stringent integrity performance, safety requirements are integrated into the system design and development from its starting phase to the final phase. Galileo's integrity performance is provided in the Integrity Support Message (ISM) format, as Galileo utilizes a Dual Frequency Multi Constellation (DFMC) Satellite Based Augmentation System (SBAS) and Advanced Receiver Autonomous Integrity Monitoring (ARAIM) to serve safety critical applications. The integrity performance of Galileo is ensured by using a methodology similar to GPS Block II (i.e. continuous performance monitoring and maintenance on the system). The integrity assurance procedures reviewed in this paper can be utilized for a new satellite navigation system that will be developed in the near future.

Integrity, Orbit Determination and Time Synchronisation Algorithms for Galileo

  • Merino, M.M. Romay;Medel, C. Hernandez;Piedelobo, J.R. Martin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.9-14
    • /
    • 2006
  • Galileo is the European Global Navigation Satellite System, under civilian control, and consists on a constellation of medium Earth orbit satellites and its associated ground infrastructure. Galileo will provide to their users highly accurate global positioning services and their associated integrity information. The elements in charge of the computation of Galileo navigation and integrity information are the OSPF (Orbit Synchronization Processing Facility) and IPF (Integrity Processing Facility), within the Galileo Ground Mission Segment (GMS). Navigation algorithms play a key role in the provision of the Galileo Mission, since they are responsible for computing the essential information the users need to calculate their position: the satellite ephemeris and clock offsets. Such information is generated in the Galileo Ground Mission Segment and broadcast by the satellites within the navigation signal, together with the expected a-priori accuracy (SISA: Signal-In-Space Accuracy), which is the parameter that in fault-free conditions makes the overbounding the predicted ephemeris and clock model errors for the Worst User Location. In parallel, the integrity algorithms of the GMS are responsible of providing a real-time monitoring of the satellite status with timely alarm messages in case of failures. The accuracy of the integrity monitoring system is characterized by the SISMA (Signal In Space Monitoring Accuracy), which is also broadcast to the users through the integrity message.

  • PDF

GPS Integrity Monitoring Method Using Auxiliary Nonlinear Filters with Log Likelihood Ratio Test Approach

  • Ahn, Jong-Sun;Rosihan, Rosihan;Won, Dae-Hee;Lee, Young-Jae;Nam, Gi-Wook;Heo, Moon-Beom;Sung, Sang-Kyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.563-572
    • /
    • 2011
  • Reliability is an essential factor in a navigation system. Therefore, an integrity monitoring system is considered one of the most important parts in an avionic navigation system. A fault due to systematic malfunctioning definitely requires integrity reinforcement through systematic analysis. In this paper, we propose a method to detect faults of the GPS signal by using a distributed nonlinear filter based probability test. In order to detect faults, consistency is examined through a likelihood ratio between the main and auxiliary particle filters (PFs). Specifically, the main PF which includes all the measurements and the auxiliary PFs which only do partial measurements are used in the process of consistency testing. Through GPS measurement and the application of the autonomous integrity monitoring system, the current study illustrates the performance of the proposed fault detection algorithm.

Structural Integrity Monitoring of the Marine Riser with Composite Structure (복합구조 해양라이저의 구조건전성 모니터링)

  • Yoo, Yong;Jae, Hyunmin;Park, Sooyong;Choi, Sanghyun
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.4
    • /
    • pp.44-51
    • /
    • 2014
  • As the world energy consumption grows, the interest in marin energy resources is increasing. In excavating such resources, the marine riser which connects the floating structure and sea bed is an essential device. The riser system is often exposed to harsh ocean environment and thus vulnerable to damage. Since the failure of the riser system may cause serious economical loss as well as environmental problem, the structural integrity of the riser is very important. Generally, the riser is an extremely slender structure with a much smaller diameter than a length. Therefore, a structural integrity monitoring methodology for typical buildings and bridges may not be applicable. In this paper, the applicability of a damage identification method for a structure to a marine riser is examined via a numerical example. Also, recent research practices and findings for monitoring the behavior and the structural integrity of the marine riser are examined and summarized.

Design of Advanced Monitoring Concept to Strengthen the Performance of Marine DGPS (항만 DGPS의 성능을 강화하기 위한 향상된 감시 개념 설계)

  • Shin, Mi-Young;Ko, Jae-Young;Han, Young-Hhoon;Kim, Young-Ki;Seo, Ki-Yeol
    • Journal of Navigation and Port Research
    • /
    • v.40 no.1
    • /
    • pp.21-26
    • /
    • 2016
  • Even in the marine industry was required the looser positioning performance as compared to other application domain, a high-quality positioning performance and reliability are becoming ever more important. The high-quality performance includes not only accuracy but also integrity, continuity, and availability. However, current DGPS service is not satisfying the minimum positioning performance requirements for maritime user proposed by IMO. Especially, no one can guarantee the required integrity performance by DGPS service. This paper presents the advanced monitoring concept to strengthen the performance of current DGPS through the enhanced monitoring, guarantee and notice functions. To this, the limitations of the integrity monitoring function of current DGPS are analyzed, and a countermeasure is prepared to improve the limitations of the current integrity monitoring function. This paper can be applied as basis research to improvement of the DGPS service.

Structural Joint Integrity Monitoring of Steel Frame Structures Using Impulse Responses (충격응답을 이용한 철골 구조물 접합부의 구조건전성 모니터링)

  • Yi, Jin-Hak;Lee, Kwang-Soo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.145-150
    • /
    • 2008
  • This study proposes an improved AR-model based structural joint integrity monitoring method and a new damage sensitive feature using RMS values of impulse responses. The proposed methods were applied for joint integrity monitoring of a model scale 2-bay and 4-story steel frame structure and it was found that the AR coefficients could be more consistently estimated by adopting the band-pass filter and cross-correlation function to the raw acceleration signals and the joint damages could be successfully monitored by the proposed methods.

  • PDF

Structural Health Monitoring Methods using PZT-Actuated Flexural Vibration of Beams (PZT 에 의해 굽힘 가진을 받는 보의 구조건전도 모니터링)

  • Kim, Seung-Joon;Park, Jun-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.601-605
    • /
    • 2007
  • This paper describes the experimental method to monitor the structural integrity. The crack on structures changes the wave propagation characteristics of structures. To monitor this change, frequency dependent variation of dynamic stiffness of beam structures is obtained by using beam transfer function method, and its trends are compared to undamaged one for identifying the location and size of the crack. Piezoelectric actuators were used to generate flexural vibrations. It eliminated various restrictions of continuously measuring wave propagation characteristics and monitoring structural integrity. The structural integrity was identified with minimal number of measurements and smart structures employing PZT actuations.

  • PDF

Performance Analysis on GPS RAIM in the Post SA Era

  • Choi, Jae-Won;Lee, Jang-Gyu;Park, Chan-Gook;Jee, Gyu-In
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.56.4-56
    • /
    • 2001
  • Using GPS in the navigation systems such as aviation, maritime and land applications, integrity is considered importantly with accuracy for safety. Integrity monitoring performed in the GPS receiver itself is Receiver Autonomous Integrity Monitoring (RAIM) and need not an independent ground monitoring station. RAIM algorithm uses redundant information when more than four satellites are visible and makes consistency checks between measurement information to alarm users whether the system is operating out of its specified performance limits. Selective Availability (SA) that was used to protect the security interests of the U.S. and its allies by globally denying the full accuracy of the civil system was turned off on May 1, 2000 ...

  • PDF