• Title/Summary/Keyword: Integrated Manufacturing Systems

Search Result 308, Processing Time 0.048 seconds

Virtual Manufacturing for an Automotive Company(V) - Parametric Modeling of the Digital General Assembly Shop using Object-Oriented Methods (자동차 가상생산 기술 적용(V) - 객체지향 방법에 의한 디지털 조립공장의 파라메트릭 모델링)

  • Park, Tae-Keun;Kim, Gun-Yeon;Noh, Sang-Do;Park, Young-Jin
    • IE interfaces
    • /
    • v.18 no.1
    • /
    • pp.94-103
    • /
    • 2005
  • Digital Manufacturing is a technology to facilitate effective product developments and agile productions by digital environments representing the physical and logical schema and the behavior of real manufacturing system including manufacturing resources, processes and products. A digital factory as a well-designed and integrated environment is essential for successful applications of this technology. In this research, we constructed a sophisticated digital factory of an automotive company’ general assembly shop by measuring and 3-D CAD modeling using parametric methods. Specific parameters of each objects were decided by object-oriented schema of the general assembly shop. It is expected that this method is very useful for constructions of a digital factory, and helps to manage diverse information and re-use 3D models.

An Extended Product Data Management System Supporting Personal Manufacturing Based on Connected Consumer 3D Printing Services (3D 프린팅 서비스 기반 개인제조를 지원하는 확장 제품자료관리 시스템)

  • Do, Namchul
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.3
    • /
    • pp.215-223
    • /
    • 2016
  • The low price around 1000 USD makes consumer 3D printers as a new additive manufacturing platform for the personal manufacturing where consumers can make and sell their own products. To allow the consumers to design and manufacture their products, not only economic 3D printers but also supporting information systems for their design and manufacturing are essential. This study suggests an extended product data management (PDM) system that can support both the design and manufacturing of personal products with consumer 3D printing services. This extended PDM system helps consumer designers use advanced PDM technologies for their design and connected 3D printing services with Internet of Things (IoT) technology for realization of their products. As a result, the proposed system supports the consumer designers a seamless integrated product development and manufacturing environment supported by PDM and consumer 3D printing services.

An AHP Approach to Evaluate the priorities of Manufacturing Performance Criteria in Korean Automobile Parts Manufacturing Company (AHP에 의한 한국자동차부품제조사의 제조성과기준의 중요도 평가)

  • Kim, Tae-Soo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.3
    • /
    • pp.115-122
    • /
    • 2011
  • The critical role played by manufacturing performance measurement systems in achieving competitive success is increasingly recognized. Developing an integrated performance measurement model is significant for strategic management. This study consist of several principal steps. Performance criteria from the literature and an questionnaire were utilized prior to building the performance model. The AHP(Analytic Hierarchy Process) is utilized to evaluate the weight of each criterion when generating the performance measurement model for Korea automobile parts manufacturing company. AHP analysis showed clear difference in the priority between 5 criteria and 24 sub-criteria in terms of manufacturing performance of Korean automobile parts manufacturing company. The result of priority evaluation in the 5 criteria of 2nd level was ranked quality, cost, delivery, employee, flexibility. And the critical sub-criteria in the 24 sub-criteria of 3rd level was ranked claim rate, process defect rate, outsourcing parts defect rate, ability to quality management innovation, claim cost, etc.

Waste Disposal Models for Manufacturing Firm and Disposal Firm

  • Tsai, Chi-Yang;Nagaraj, Sugarla Edwin
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.2
    • /
    • pp.115-122
    • /
    • 2011
  • This research considers a system containing a manufacturing firm who generates waste material during manufacturing process, and a disposal firm who collects and disposes the waste material. Identification of the optimal number of pick ups and the amount of waste to be disposed at certain period of time in terms of cost minimization is studied. Two types of waste accumulation rates, constant and linearly increasing, are discussed and mathematical models are developed. It can be shown that the results for these two different types of waste accumulation differ in a wide range because of the difference in the way of how waste is accumulated, which disturbs the storage cost. An integrated model is also developed and discussed in which both the manufacturing firm and the disposal firm benefit from the coordination between the two parties. It is shown that the optimal policy adopted by the integrated approach can provide a strong and consistent cost-minimizing effect for both the manufacturing firm and the disposal firm over the existing approach. Finally, all the models are verified by a numerical example and the results are compared.

Additive Manufacturing for Sensor Integrated Components (센서 융합형 지능형 부품 제조를 위한 적층 제조 기술 연구)

  • Jung, Im Doo;Lee, Min Sik;Woo, Young Jin;Kim, Kyung Tae;Yu, Ji-Hun
    • Journal of Powder Materials
    • /
    • v.27 no.2
    • /
    • pp.111-118
    • /
    • 2020
  • The convergence of artificial intelligence with smart factories or smart mechanical systems has been actively studied to maximize the efficiency and safety. Despite the high improvement of artificial neural networks, their application in the manufacturing industry has been difficult due to limitations in obtaining meaningful data from factories or mechanical systems. Accordingly, there have been active studies on manufacturing components with sensor integration allowing them to generate important data from themselves. Additive manufacturing enables the fabrication of a net shaped product with various materials including plastic, metal, or ceramic parts. With the principle of layer-by-layer adhesion of material, there has been active research to utilize this multi-step manufacturing process, such as changing the material at a certain step of adhesion or adding sensor components in the middle of the additive manufacturing process. Particularly for smart parts manufacturing, researchers have attempted to embed sensors or integrated circuit boards within a three-dimensional component during the additive manufacturing process. While most of the sensor embedding additive manufacturing was based on polymer material, there have also been studies on sensor integration within metal or ceramic materials. This study reviews the additive manufacturing technology for sensor integration into plastic, ceramic, and metal materials.

A distributed network architecture for managing cells in an integrated automated manufacturing facility

  • Clark, J.;Cooke, J.;Clark, G.S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.715-720
    • /
    • 1989
  • The individual control of machines or processors is subordinate to the management of the entire manufacturing production function. This distinction is necessary in order to provide the appropriate separation of and detailed focus on process activities while still providing acceptable interfaces for the upload of data and the download of instructions, recipes, or commands.

  • PDF

A Classification and Coding System for the Design Information Management in Make-to-Order Manufacturing (수주생산에서의 설계정보 관리를 위한 부품분류와 코딩)

  • 이규용;김재균;문치웅
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1998.10a
    • /
    • pp.166-170
    • /
    • 1998
  • Classification and Coding(C&C) systems as a core of design information management have been accomplished by many studies in terms of design and manufacturing attribute based on Group Technology. Those are very difficult to apply in make-to-order(MTO) manufacturing because the environment of MTO has various characteristics of product, many licensors, engineering change, insufficiency of integrated management system for codes and so on. This paper presents a suitable C&C system to MTO manufacturing which consider management level and drawing.

  • PDF

Next Generation Manufacturing(NGM) (1) (차세대 제조 시스템(1))

  • 김선호;이후상
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.11-20
    • /
    • 2000
  • 본 글은 1999년 5월 CASA/SME Blue Book에 Jim Jordan 그리고 Fred Michel이 “Next Generation Manufacturing”라는 제목으로 게재한 자료를 편자의 의도에 따라 재편집한 것입니다. CASA(Computer and Automated Systems Association)는 SME(Society of Manufacturing Engineers)에서 활동하고 있는 하나의 분과로서 CIM Enterprise Wheel을 만들어 내 유명한 곳이기도 합니다. 저자는 본 글에서 앞으로 10여년 간 펼쳐질 차세대 제조 시스템에서는 지식경영이 가장 중요한 요소라고 정의하고 있습니다. 그리고 차세대 제조 시스템의 운영전략으로는 기업통합, 인간자원의 지적이용, 지식의 개발 및 유지, NGM 프로세스 장비 및 기술의 채용을 들고 있습니다.

  • PDF

Virtual Manufacturing for an Automotive Company(III) - Construction and Operation of a Virtual Paint Shop (자동차 가상생산 기술 적용(III) - 가상 도장공장구축 및 운영)

  • Noh, Sang-Do;Kim, Duck-Young;Park, Young-Jin
    • IE interfaces
    • /
    • v.15 no.4
    • /
    • pp.356-363
    • /
    • 2002
  • Virtual Manufacturing is a technology to facilitate effective product development and agile production by computer models representing the physical and logical schema and the behavior of real manufacturing systems including manufacturing resources, environments and products. For the successful application of this technology, a virtual factory as a well-designed and integrated environment is essential. In this research, we constructed a sophisticated virtual factory model of an automotive company's paint shop, and performed precise simulations of unit cells, lines and whole plant operations for collision check and off-line programming. It is expected that this virtual paint shop is useful for achieving time and cost savings in many manufacturing preparation and planning activities of new car development processes.

Implementation of BPEL based Workflow Management System in Manufacturing Execution Systems (제조실행시스템에서의 BPEL 기반 워크플로우 관리시스템의 적용)

  • Park, Dong-Jin;Jang, Byoung-Hoon
    • Journal of Information Technology Services
    • /
    • v.8 no.4
    • /
    • pp.165-174
    • /
    • 2009
  • This paper outlines opportunities and challenges in the implementation of BPEL based WFMS(WorkFlow Management System) for the MES(Manufacturing Execution Systems) in semiconductor manufacturing. At present, the most MESs in semiconductor wafer fabrication shop have the problems in terms of application software integration, reactivity, and adaptability. When a plant has to produce new product mix, remodel the manufacturing execution process, or replace obsolete equipments, the principal road blocks for responding to new manufacturing environment are the difficulties in porting existing application software to new configurations. In this paper, the issues about WFMS technologies including BPEL standard applied for MES are presented. And then, we introduce the integrated development framework named nanoFlow which is optimized for developing the BPEL based WFMS application for automated manufacturing system. And we describe a WFMS implemented with using nanoFlow framework, review and evaluate the system.