• Title/Summary/Keyword: Integral sliding mode

Search Result 116, Processing Time 0.029 seconds

Control and Operation of Hybrid Microsource System Using Advanced Fuzzy- Robust Controller

  • Hong, Won-Pyo;Ko, Hee-Sang
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.7
    • /
    • pp.29-40
    • /
    • 2009
  • This paper proposes a modeling and controller design approach for a hybrid wind power generation system that considers a fixed wind-turbine and a dump load. Since operating conditions are kept changing, it is challenge to design a control for reliable operation of the overall system To consider variable operating conditions, Takagi-Sugeno (TS) fuzzy model is taken into account to represent time-varying system by expressing the local dynamics of a nonlinear system through sub-systems, partitioned by linguistic rules. Also, each fuzzy model has uncertainty. Thus, in this paper, a modem nonlinear control design technique, the sliding mode nonlinear control design, is utilized for robust control mechanism In the simulation study, the proposed controller is compared with a proportional-integral (PI) controller. Simulation results show that the proposed controller is more effective against disturbances caused by wind speed and load variation than the PI controller, and thus it contributes to a better quality wind-hybrid power generation system.

Stabilization Control of line of sight of OTM(On-The-Move) Antenna (OTM 단말기 안테나 시선 안정화 제어)

  • Kang, Min-Sig;Cho, Yong-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.11
    • /
    • pp.2073-2082
    • /
    • 2010
  • The 4-th generation of mobile communication aims to realize global, fast and mobile communication service. The satellite communication charges a key role in this field. In this study, an OTM(On-The-Move) antenna which is mounted on ground vehicles and is used for mobile communication between vehicle and satellite was addressed. Since vehicles move during communication, active antenna line-of-sight stabilization is a core technology to guarantee high satellite communication quality. Stabilization of a satellite tracking antenna which consists of 2-DOF gimbals, an elevation gimbal over an azimuth gimbal, was considered in this study. Various disturbance torques such as static and dynamic mass imbalance torques, variation of moment of inertia according to elevation angle, friction torque related to vehicle motion, equivalent disturbance torque due to antenna roll motion, etc. were analyzed. As a robust stabilization control, rate feedback with sliding mode control and position feedback with proportional+integral control was suggested. To compensate antenna roll motion, a supplementary roll rate feed forward control was included beside of the feedback control loop. The feasibility of the analysis and the proposed control design were verified along with some simulation results.

Current Regulated Delta Modulator for Series Resonant Inverter with Transformer-Coupled Load (변압기-결합형 직렬공진 인버터의 델타변조 전류제어)

  • 안희욱;김학성
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.3
    • /
    • pp.231-239
    • /
    • 1999
  • An improved version of current-regulated delta modulator (CRDM) is investigated for the output cunent control of v voltage-source inverters that have transformer-coupled series resonant load and are operated at the resonant frequency. Conventional CRDM has not only CUlTent offset problem but also transformer flux saturation problem when i it is applied to induction heating systems that have transformel-coupled loads. To cope with these problems, the effect of flux saturation is analysed, and simple method to av이d the problem is proposed. And integral type of CRDM is a adopted to remove the cunent offset. The boundaries of integrator gain for stable operation is calculated using the c concept of sliding mode controL The validity of proposed strategy is vel퍼ed through simulations and prototype e experiments.

  • PDF

Zero Torque Control of Switched Reluctance Motor for Integral Charging (충전기 겸용 스위치드 릴럭턴스 전동기의 제로토크제어)

  • Rashidi, A.;Namazi, M.M;Saghaian, S.M.;Lee, D.H.;Ahn, J.W.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.328-338
    • /
    • 2017
  • In this paper, a zero torque control scheme adopting current sharing function (CSF) used in integrated Switched Reluctance Motor (SRM) drive with DC battery charger is proposed. The proposed control scheme is able to achieve the keeping position (KP), zero torque (ZT) and power factor correction (PFC) at the same time with a simple novel current sharing function algorithm. The proposed CSF makes the proper reference for each phase windings of SRM to satisfy the total charging current of the battery with zero torque output to hold still position with power factor correction, and the copper loss minimization during of battery charging is also achieved during this process. Based on these, CSFs can be used without any recalculation of the optimal current at every sampling time. In this proposed integrated battery charger system, the cost effective, volume and weight reduction and power enlargement is realized by function multiplexing of the motor winding and asymmetric SR converter. By using the phase winding as large inductors for charging process, and taking the asymmetric SR converter as an interleaved converter with boost mode operation, the EV can be charged effectively and successfully with minimum integral system. In this integral system, there is a position sliding mode controller used to overcome any uncertainty such as mutual inductance or DC offset current sensor. Power factor correction and voltage adaption are obtained with three-phase buck type converter (or current source rectifier) that is cascaded with conventional SRM, one for wide input and output voltage range. The practicability is validated by the simulation and experimental results by using a laboratory 3-hp SRM setup based on TI TMS320F28335 platform.

Robust Trajectory Tracking Control of a Mobile Robot Combining PDC and Integral Sliding Mode Control (PDC와 적분 슬라이딩 모드 제어를 결합한 이동 로봇의 강인 궤도 추적 제어)

  • Park, Min-soo;Park, Seung-kyu;Ahn, Ho-kyun;Kwak, Gun-pyong;Yoon, Tae-sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.7
    • /
    • pp.1694-1704
    • /
    • 2015
  • In this paper, a robust trajectory tracking control method of a wheeled mobile robot is newly proposed combining the PDC and the ISMC. The PDC is a relatively simple and easy control method for nonlinear system compared to the other non-linear control methods. And the ISMC can have robust and stable control characteristics against model uncertainties and disturbances from the initial time by placing the states on the sliding plane with desired nominal dynamics. Therefore, the proposed PDC+ISMC trajectory tracking control method shows robust trajectory tracking performance in spite of external disturbance. The tracking performance of the proposed method is verified through simulations. Even though the disturbance increases, the proposed method keeps the performance of the PDC method when there is no disturbance. However, the PDC trajectory tracking control method has increasing tracking error unlike the proposed method when the disturbance increases.

자율주행 자동차의 전기적 파워 조향 시스템을 위한 제어 기법의 개관

  • Son, Yeong-Seop;Kim, Won-Hui;Jeong, Jeong-Ju
    • ICROS
    • /
    • v.21 no.1
    • /
    • pp.31-36
    • /
    • 2015
  • 운전자에게 편의성을 제공하는 차량의 주행관련 Advanced driver assist system (ADAS)에는 차량의 종방향과 횡방향 운동에 대한 제어기가 요구된다. 횡방향 제어를 위해서는 조향 시스템의 조향각 제어가 요구되는데 최근 구조적으로 간단하고 연비향상, 차량의 중량 감소, 빠른 응답성을 가지고 있는 전기적 파워 조향 (Electric power steering, EPS) 시스템이 자동차 산업에서 널리 사용되고 있다. 차량의 주행관련 ADAS를 사용하여 자율 주행 시 EPS 시스템은 상위 제어기에서 계산된 필요한 조향각을 추종 할 수 있도록 조향 핸들의 각 제어를 해야 한다. 그러나 일반적인 EPS 시스템은 운전자가 조향 핸들에 인가된 토크를 보조해 줄 수 있는 토크를 출력해 준다. 본 논문에서는 이러한 문제를 해결하는 방법들을 설명한다. 먼저 EPS 시스템의 기본 기능에 대해서 설명을 하고, 자율 추행 차량을 위한 조항 핸들의 각 제어를 위한 proportional-integral 제어, 슬라이딩 모드 제어 (Sliding mode control), 관측기 기반 비선형 댐핑 제어(Observer based nonlinear damping control) 등과 같은 다양한 기법의 제어 알고리즘들에 대한 방법들이 고찰되었다.

  • PDF

DSP-based Robust Nonlinear Speed Control of PM Synchronous Motor

  • Baik, In-Cheol;Kim, Kyeong-Hwa;Youn, Myung-Joong
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.1
    • /
    • pp.94-102
    • /
    • 1998
  • A DSP-based robust nonlinear speed control of a permanent magnet synchronous motor(PMSM) is presented. A quasi-linearized and decoupled model including the influence of parameter variations and speed measurement error on the nonlinear speed control of a PMSM is derived. Based on this model, a boundary layer integral sliding mode controller to improve the robustness and performance of the nonlinear speed control of a PMSM is designed and compared with the conventional controller. To show the validity of the proposed control scheme, simulations and experimental works are carried out and compared with the conventional control scheme.

  • PDF

Robust Near Time-optimal Controller Design for a Driving System Using Lyapunov Stability (Lyapunov 안정성을 이용한 구동장치의 강인 최단시간 제어기 설계)

  • Lee, Seong-Woo;Song, Oh-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.7
    • /
    • pp.650-658
    • /
    • 2012
  • This paper proposes a high performance position controller for a driving system using a time optimal controller which has been widely used to control driving systems to achieve desired reference position or velocity in a minimum response time. The main purpose of this research lies in an improvement of transient response performance rather than that of steady-state response in comparison with other control strategies. In order to refine the scheme of time optimal control, Lyapunov stability proofs are incorporated in a controller of standard second order system model. This scheme is applied to the control of a driving system. In view of the simulation and experiment results, the standard second order system model exhibits better minimum-time control performance and robustness than double integral system model does.

The Improved Binary Disturbance Observer for the Position Control of Induction Motors (유도전동기의 위치제어를 위한 개선된 바이너리 외란관측기)

  • 한윤석;김영석;김상욱
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.249-254
    • /
    • 1998
  • A control approach for the robust position control of induction motors based on the improved binary disturbance observer is described. The conventional binary disturbance observer is used to remove the chattering problem of a sliding mode disturbance observer. However, the steady state error may be existed in the conventional binary disturbance observer because it estimates external disturbance with a constant boundary layer. In order to overcome this problem, a new binary disturbance observer with an integral augmented switching hyperplane is improved. The robustness is achieved, and the continuous control is realised by employing the improved observer without the chattering problem and the steady state error. The effectiveness of the improved observer is confirmed by the comparative experimental results.

  • PDF

The Robust Position Control of Induction Motors using a Binary Disturbance Observer (바이너리 외란관측기를 이용한 유도전동기의 견실한 위치제어)

  • Han, Yun-Seok;Choe, Jeong-Su;Kim, Yeong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.4
    • /
    • pp.203-211
    • /
    • 1999
  • A control approach for the robust position control of induction motors based on the binary disturbance observer is described. The conventional binary disturbance observer is used to remove the chattering problem of a sliding mode disturbance observer. However, the steady state error may exist in the conventional binary disturbance observer because it estimates external disturbance with a constant boundary layer. In order to overcome this problem, new binary disturbance observer with an integral augmented switching hyperplane is proposed. The robustness is achieved, and the continuous control is realized by employing the proposed observer without the chattering problem and the steady state error. The effectiveness of the proposed observer is confirmed by the comparative experimental results.

  • PDF