• Title/Summary/Keyword: Integral boundary layer equation

Search Result 44, Processing Time 0.027 seconds

Continuous and discontinuous contact problem of a magneto-electro-elastic layer

  • Comez, Isa;Karabulut, Pembe Merve
    • Structural Engineering and Mechanics
    • /
    • v.83 no.1
    • /
    • pp.67-77
    • /
    • 2022
  • In this study, frictionless continuous and discontinuous contact problems of a magneto-electro-elastic layer in the presence of the body force were discussed. The layer was indented by a rigid cylindrical insulating punch and supported by a rigid substrate without bond. Applying the Fourier integral transform technique, the general expressions of the problem were derived in the presence of body force. Thanks to the boundary conditions, the singular integral equations were obtained for both the continuous and the discontinuous contact cases. Gauss-Chebyshev integration formulas were used to transform the singular integral equations into a set of nonlinear equations. Contact width under the punch, initial separation distance, critical load, separation regions and contact stress under the punch and between the layer, and substrate were given as a result.

Stress Intensity Factors for an Interlaminar Crack in Composites under Arbitrary Crack Surface Loadings (임의의 균열표면 하중을 받는 복합채 중앙균열의 응력세기계수)

  • Lee, Gang-Yong;Park, Mun-Bok;Kim, Seong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.901-909
    • /
    • 1996
  • A model is constructed to evaluate the stress intensity factors(SIFs) for composites with an interlaminar crack subjected to as arbitrary crack surface loading. A mixed boundary value problem is formulated by Fourier integral transform method and a Fredholm integral equation of the second kind is derived. The integral equation is solved numerically and the mode I and II SIFs are evaluated for various shear modulus ratios between each layer, crack length to layer thickness, each term of crack surface polynomial loading and the number of layers. The mode I and II SIFs for the E- glass/epoxy composites as well as the hybrid composites are also evaluated.

Mode III Stress Intensity Factors for Orthotropic Layered Material with Internal Center Crack Under Uniform Anti-Plane Shear Loading (균일한 면외 전단하중을 받는 직교 이방성 적층재 내부 중앙균열의 모드 III 응력세기계수)

  • Lee, Kang-Yong;Joo, Sung-Chul;Kim, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.961-967
    • /
    • 1999
  • A model is constructed to evaluate the mode III stress intensity factor(SIF) for orthotropic three-layered material with a center crack subjected to uniform anti-plane shear loading. A mixed boundary value problem is formulated by Fourier integral transform method and a Fredholm integral equation of the second kind is derived. The integral equation is numerically analyzed to evaluate the effects of the ratio of shear modulus, strength of each layer and crack length to layer thickness on the stress intensity factor.

A BEM implementation for 2D problems in plane orthotropic elasticity

  • Kadioglu, N.;Ataoglu, S.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.5
    • /
    • pp.591-615
    • /
    • 2007
  • An improvement is introduced to solve the plane problems of linear elasticity by reciprocal theorem for orthotropic materials. This method gives an integral equation with complex kernels which will be solved numerically. An artificial boundary is defined to eliminate the singularities and also an algorithm is introduced to calculate multi-valued complex functions which belonged to the kernels of the integral equation. The chosen sample problem is a plate, having a circular or elliptical hole, stretched by the forces parallel to one of the principal directions of the material. Results are compatible with the solutions given by Lekhnitskii for an infinite plane. Five different orthotropic materials are considered. Stress distributions have been calculated inside and on the boundary. There is no boundary layer effect. For comparison, some sample problems are also solved by finite element method and to check the accuracy of the presented method, two sample problems are also solved for infinite plate.

The receding contact problem of two elastic layers supported by two elastic quarter planes

  • Yaylaci, Murat;Birinci, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.48 no.2
    • /
    • pp.241-255
    • /
    • 2013
  • The receding contact problem for two elastic layers whose elastic constants and heights are different supported by two elastic quarter planes is considered. The lower layer is supported by two elastic quarter planes and the upper elastic layer is subjected to symmetrical distributed load whose heights are 2a on its top surface. It is assumed that the contact between all surfaces is frictionless and the effect of gravity force is neglected. The problem is formulated and solved by using Theory of Elasticity and Integral Transform Technique. The problem is reduced to a system of singular integral equations in which contact pressures are the unknown functions by using integral transform technique and boundary conditions of the problem. Stresses and displacements are expressed depending on the contact pressures using Fourier and Mellin formula technique. The singular integral equation is solved numerically by using Gauss-Jacobi integration formulation. Numerical results are obtained for various dimensionless quantities for the contact pressures and the contact areas are presented in graphics and tables.

Interaction of Local Roughness and Turbulent Boundary Layer (국소거칠기와 난류 경계층과의 상호작용)

  • 문철진
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.2
    • /
    • pp.120-124
    • /
    • 1991
  • An interaction of turbulent boundary layer and local roughness effects was evaluated to investigate the shear frictional coefficient in diffuser. Clauser roughness function was applied to Karman's integral equation for governing equation. The roughness of overall and local diffuser surfaces were calculated using Cole's wall and wake law and Clauser's roughness function for turbulent boundary layer characteristics. The calculating results were compared with the experimental results of other paper. It shows some significant improyements for shear frictional coefficient. Computer code was then used to confirm the behavior of local frictional coefficient along with diffuser roughness surface for some reduction of shear flow stress.

  • PDF

On the receding contact between a two-layer inhomogeneous laminate and a half-plane

  • Liu, Zhixin;Yan, Jie;Mi, Changwen
    • Structural Engineering and Mechanics
    • /
    • v.66 no.3
    • /
    • pp.329-341
    • /
    • 2018
  • This paper considers the smooth receding contact problem between a homogeneous half-plane and a composite laminate composed of an inhomogeneously coated elastic layer. The inhomogeneity of the elastic modulus of the coating is approximated by an exponential function along the thickness dimension. The three-component structure is pressed together by either a concentrated force or uniform pressures applied at the top surface of the composite laminate. Both semianalytical and finite element analysis are performed to solve for the extent of contact and the contact pressure. In the semianalytical formulation, Fourier integral transformation of governing equations and boundary conditions leads to a singular integral equation of Cauchy-type, which can be numerically integrated by Gauss-Chebyshev quadrature to a desired degree of accuracy. In the finite element modeling, the functionally graded coating is divided into homogeneous sublayers and the shear modulus of each sublayer is assigned at its lower boundary following the predefined exponential variation. In postprocessing, the stresses of any node belonging to sublayer interfaces are averaged over its surrounding elements. The results obtained from the semianalytical analysis are successfully validated against literature results and those of the finite element modeling. Extensive parametric studies suggest the practicability of optimizing the receding contact peak stress and the extent of contact in multilayered structures by the introduction of functionally graded coatings.

Calculation of Stress Intensity Factors Using Single-Layer Potential and Weight Function (Single-Layer 포텐셜과 가중함수를 이용한 응력강도계수의 계산)

  • 이형연;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.981-989
    • /
    • 1995
  • A new weight function approach to determine SIF(stress intensity factor) using single-layer potential has been presented. The crack surface displacement field was represented by one boundary integral term whose kernel was modified from Kelvin's fundamental solution. The proposed method enables the calculation of SIF using only one SIF solution without any modification for the crack geometries symmetric in two-dimensional plane such as a center crack in a plate with or without an internal hole, double edge cracks, circumferential crack or radial cracks in a pipe. The application procedure to those crack problems is very simple and straightforward with only one SIF solution. The necessary information in the analysis is two reference SIFs. The analysis results using present closed-form solution were in good agreement with those of the literature.

A Speed Sensorless Vector Control for Permanent Magnet Synchronous Motors based on an Adaptive Integral Binary Observer

  • Choi Yang-Kwang;Kim Young-Seok;Han Yoon-SeoK
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.1
    • /
    • pp.70-77
    • /
    • 2005
  • This paper presents sensorless speed control of a cylindrical permanent magnet synchronous motor (PMSM) using the adaptive integral binary observer. In view of the composition with a main loop regulator and an auxiliary loop regulator, the normal binary observer has the feature of chattering alleviation in the constant boundary layer. However, the steady state estimation accuracy and robustness are dependent upon the thickness of the constant boundary layer. In order to improve the steady state performance of the binary observer, a new binary observer is formed by the addition of extra integral dynamics to the existing switching hyperplane equation. Also, because the parameters of the dynamic equations such as machine inertia or viscosity friction coefficient are not well known and these values can be changed during normal operations, there are many restrictions in the actual implementation. The proposed adaptive integral binary observer applies an adaptive scheme so that the observer may overcome the problems caused by using dynamic equations. The rotor speed is constructed by using the Lyapunov function. The observer structure and its design method are described. The experimental results of the proposed algorithm are presented to prove the effectiveness of the approach.

3-D Magnetostatic Field Calculation by a Boundary Integral Equation Method using a Difference Field Concept (Difference field 개념의 경계적분방정식을 이용한 3차원 정자장 해석)

  • Park, Min-Cheol;Kim, Dong-Hun;Park, Il-Han
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.903-905
    • /
    • 2000
  • For an accurate analysis of three dimensional linear magnetostatic problems, a new boundary integral equation formulation is presented. This formulation adopts difference magnetic field concept and uses single layer magnetic surface charge as unknown. The proposed method is capable of eliminating numerical cancellation errors inside ferromagnetic materials. In additions, computing time and storage memory are reduced by 75% in comparison with the reduced and total scalar potential formulation. Two examples are given to show its efficiency and accuracy.

  • PDF